結果
問題 | No.1339 循環小数 |
ユーザー | 👑 Kazun |
提出日時 | 2021-01-15 21:51:54 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 148 ms / 2,000 ms |
コード長 | 3,810 bytes |
コンパイル時間 | 171 ms |
コンパイル使用メモリ | 82,480 KB |
実行使用メモリ | 68,352 KB |
最終ジャッジ日時 | 2024-05-04 23:30:15 |
合計ジャッジ時間 | 3,856 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 36 ms
52,992 KB |
testcase_01 | AC | 49 ms
64,128 KB |
testcase_02 | AC | 49 ms
64,128 KB |
testcase_03 | AC | 52 ms
63,488 KB |
testcase_04 | AC | 51 ms
64,068 KB |
testcase_05 | AC | 46 ms
62,080 KB |
testcase_06 | AC | 45 ms
61,440 KB |
testcase_07 | AC | 50 ms
64,256 KB |
testcase_08 | AC | 50 ms
64,000 KB |
testcase_09 | AC | 50 ms
64,256 KB |
testcase_10 | AC | 50 ms
64,128 KB |
testcase_11 | AC | 58 ms
67,328 KB |
testcase_12 | AC | 56 ms
66,560 KB |
testcase_13 | AC | 54 ms
66,048 KB |
testcase_14 | AC | 55 ms
65,536 KB |
testcase_15 | AC | 55 ms
65,536 KB |
testcase_16 | AC | 55 ms
65,792 KB |
testcase_17 | AC | 59 ms
66,432 KB |
testcase_18 | AC | 56 ms
65,792 KB |
testcase_19 | AC | 56 ms
65,408 KB |
testcase_20 | AC | 58 ms
66,432 KB |
testcase_21 | AC | 92 ms
67,200 KB |
testcase_22 | AC | 95 ms
67,456 KB |
testcase_23 | AC | 99 ms
67,072 KB |
testcase_24 | AC | 95 ms
67,712 KB |
testcase_25 | AC | 96 ms
67,072 KB |
testcase_26 | AC | 93 ms
66,944 KB |
testcase_27 | AC | 94 ms
67,456 KB |
testcase_28 | AC | 102 ms
66,816 KB |
testcase_29 | AC | 90 ms
67,644 KB |
testcase_30 | AC | 90 ms
67,456 KB |
testcase_31 | AC | 148 ms
67,200 KB |
testcase_32 | AC | 145 ms
67,200 KB |
testcase_33 | AC | 98 ms
68,352 KB |
testcase_34 | AC | 69 ms
65,664 KB |
testcase_35 | AC | 137 ms
65,024 KB |
testcase_36 | AC | 98 ms
67,712 KB |
ソースコード
class Modulo_Error(Exception): pass class Modulo(): def __init__(self,a,n): self.a=a%n self.n=n def __str__(self): return "{} (mod {})".format(self.a,self.n) def __repr__(self): return self.__str__() #+,- def __pos__(self): return self def __neg__(self): return Modulo(-self.a,self.n) #等号,不等号 def __eq__(self,other): if isinstance(other,Modulo): return (self.a==other.a) and (self.n==other.n) elif isinstance(other,int): return (self-other).a==0 def __neq__(self,other): return not(self==other) def __le__(self,other): a,p=self.a,self.n b,q=other.a,other.n return (a-b)%q==0 and p%q==0 def __ge__(self,other): return other<=self def __lt__(self,other): return (self<=other) and (self!=other) def __gt__(self,other): return (self>=other) and (self!=other) #加法 def __add__(self,other): if isinstance(other,Modulo): if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.") return Modulo(self.a+other.a,self.n) elif isinstance(other,int): return Modulo(self.a+other,self.n) def __radd__(self,other): if isinstance(other,int): return Modulo(self.a+other,self.n) #減法 def __sub__(self,other): return self+(-other) def __rsub__(self,other): if isinstance(other,int): return -self+other #乗法 def __mul__(self,other): if isinstance(other,Modulo): if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.") return Modulo(self.a*other.a,self.n) elif isinstance(other,int): return Modulo(self.a*other,self.n) def __rmul__(self,other): if isinstance(other,int): return Modulo(self.a*other,self.n) #Modulo逆数 def inverse(self): return self.Modulo_Inverse() def Modulo_Inverse(self): x0, y0, x1, y1 = 1, 0, 0, 1 a,b=self.a,self.n while b != 0: q, a, b = a // b, b, a % b x0, x1 = x1, x0 - q * x1 y0, y1 = y1, y0 - q * y1 if a!=1: raise Modulo_Error("{}の逆数が存在しません".format(self)) else: return Modulo(x0,self.n) #除法 def __truediv__(self,other): return self*(other.Modulo_Inverse()) def __rtruediv__(self,other): return other*(self.Modulo_Inverse()) #累乗 def __pow__(self,other): if isinstance(other,int): u=abs(other) r=Modulo(pow(self.a,u,self.n),self.n) if other>=0: return r else: return r.Modulo_Inverse() else: b,n=other.a,other.n if pow(self.a,n,self.n)!=1: raise Modulo_Error("矛盾なく定義できません.") else: return self**b def Order(X): """Xの位数を求める. つまり, X^k=[1] を満たす最小の正整数 k を求める. """ R=X.n N=X.n k=2 while k*k<=N: if N%k==0: R-=R//k while N%k==0: N//=k k+=1 if N>1: R-=R//N D=[] k=1 while k*k<=R: if R%k==0: D.append(k) D.append(R//k) k+=1 a=float("inf") for k in D: if pow(X,k)==1: a=min(a,k) return a #================================================ T=int(input()) for _ in range(T): N=int(input()) while N%2==0: N//=2 while N%5==0: N//=5 print(Order(Modulo(10,N)))