結果

問題 No.1341 真ん中を入れ替えて門松列
ユーザー heno239heno239
提出日時 2021-01-15 21:56:15
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 9,364 bytes
コンパイル時間 2,727 ms
コンパイル使用メモリ 166,604 KB
実行使用メモリ 12,704 KB
最終ジャッジ日時 2024-05-04 23:38:35
合計ジャッジ時間 16,540 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,624 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 14 ms
5,376 KB
testcase_07 AC 814 ms
5,632 KB
testcase_08 AC 6 ms
5,376 KB
testcase_09 AC 1,925 ms
6,940 KB
testcase_10 TLE -
testcase_11 TLE -
testcase_12 AC 1,862 ms
6,940 KB
testcase_13 TLE -
testcase_14 TLE -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast")
//#pragma GCC target ("sse4")

#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
using namespace std;

//#define int long long
typedef long long ll;

typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod =1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acosl(-1.0);

ll mod_pow(ll x, ll n, ll m = mod) {
	if (n < 0) {
		ll res = mod_pow(x, -n, m);
		return mod_pow(res, m - 2, m);
	}
	if (abs(x) >= m)x %= m;
	if (x < 0)x += m;
	ll res = 1;
	while (n) {
		if (n & 1)res = res * x % m;
		x = x * x % m; n >>= 1;
	}
	return res;
}
struct modint {
	ll n;
	modint() :n(0) { ; }
	modint(ll m) :n(m) {
		if (n >= mod)n %= mod;
		else if (n < 0)n = (n % mod + mod) % mod;
	}
	operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
	if (n == 0)return modint(1);
	modint res = (a * a) ^ (n / 2);
	if (n % 2)res = res * a;
	return res;
}

ll inv(ll a, ll p) {
	return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
//const int max_n = 1 << 18;
//modint fact[max_n], factinv[max_n];
//void init_f() {
//	fact[0] = modint(1);
//	for (int i = 0; i < max_n - 1; i++) {
//		fact[i + 1] = fact[i] * modint(i + 1);
//	}
//	factinv[max_n - 1] = modint(1) / fact[max_n - 1];
//	for (int i = max_n - 2; i >= 0; i--) {
//		factinv[i] = factinv[i + 1] * modint(i + 1);
//	}
//}
//modint comb(int a, int b) {
//	if (a < 0 || b < 0 || a < b)return 0;
//	return fact[a] * factinv[b] * factinv[a - b];
//}
//modint combP(int a, int b) {
//	if (a < 0 || b < 0 || a < b)return 0;
//	return fact[a] * factinv[a - b];
//}

template <class Cap, class Cost> struct mcf_graph {
public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        int m = int(pos.size());
        pos.push_back({ from, int(g[from].size()) });
        g[from].push_back(_edge{ to, int(g[to].size()), cap, cost });
        g[to].push_back(_edge{ from, int(g[from].size()) - 1, 0, -cost });
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{ 0, s });
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{ dist[e.to], e.to });
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({ flow, cost });
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost == d) {
                result.pop_back();
            }
            result.push_back({ flow, cost });
            prev_cost = cost;
        }
        return result;
    }

private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};


void solve() {
	int n; ll m; cin >> n >> m;
	vector<int> a(n), b(n), c(n);
	vector<int> vb;
	ll sum = 0;
	rep(i, n) {
		cin >> a[i] >> b[i] >> c[i];
		vb.push_back(b[i]);
		sum += b[i] + max(a[i], c[i]);
	}
	sort(all(vb));
    mcf_graph<int, ll> mg(4*n+2);
	rep1(i, n-1) {
		mg.add_edge(i, i - 1, mod, 0);
		mg.add_edge(i - 1 + n, i + n, mod, 0);
	}
	rep(i, n) {
		mg.add_edge(i, i + 2 * n, mod, vb[i]);
		mg.add_edge(i + n, i + 2 * n, mod, 0);
	}
	int sta = 4 * n, goa = 4 * n + 1;
	rep(i, n) {
		mg.add_edge(i + 2 * n, goa, 1, 0);
	}
	rep(i, n) {
		int id = i + 3 * n;
		mg.add_edge(sta, id, 1, 0);
		int le, ri;
		le = lower_bound(all(vb), min(a[i], c[i])) - vb.begin();
		//cout << "?? " << le << "\n";
		//[0,le)
		if (le - 1 >= 0) {
			mg.add_edge(id, le - 1, 1, 0);
		}
		ri = upper_bound(all(vb), max(a[i], c[i])) - vb.begin();
		//[ri,n)
		if (ri < n) {
			mg.add_edge(id, ri + n, 1, max(a[i], c[i]));
		}
	}
	LP p = mg.flow(sta, goa, n);
    ll ma = p.second;
    if (p.first != n)ma = -1;
	if (ma < 0) {
		cout << "NO\n";
	}
	else {
		cout << "YES\n";
		ma = sum - ma;
		if (ma >= m) {
			cout << "KADOMATSU!" << "\n";
		}
		else {
			cout << "NO\n";
		}
	}
}

signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	//cout << fixed << setprecision(15);
	//init_f();
	//init();
	//expr();
	//int t; cin >> t; rep(i,t)
	solve();
	return 0;
}
0