結果

問題 No.1340 おーじ君をさがせ
ユーザー Gosu_Hiroo
提出日時 2021-01-15 22:01:09
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 84 ms / 2,000 ms
コード長 13,184 bytes
コンパイル時間 2,195 ms
コンパイル使用メモリ 204,064 KB
最終ジャッジ日時 2025-01-17 19:23:21
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 59
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/**
* code generated by JHelper
* More info: https://github.com/AlexeyDmitriev/JHelper
* @author
*/
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
template<typename T, typename U = T>
using P = pair<T, U>;
template<typename T>
using V = vector<T>;
using VI = vector<int>;
using VL = vector<long long>;
//#pragma GCC optimize("O3")
//#pragma GCC target("avx2")
//#pragma GCC target("avx512f")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("Ofast")
#define G(size_1) vector<vector<int>>(size_1, vector<int>())
#define SZ(x) ((long long)(x).size())
#define READ ({long long t;cin >> t;t;})
#define FOR(i, __begin, __end) for (auto i = (__begin) - ((__begin) > (__end)); i != (__end) - ((__begin) > (__end)); i += 1 - 2 * ((__begin) >
    (__end)))
#define REP(i, __end) for (auto i = decltype(__end){0}; i < (__end); ++i)
#define ALL(x) (x).begin(),(x).end()
#define RALL(x) (x).rbegin(),(x).rend()
#define F first
#define S second
#define y0 y3487465
#define y1 y8687969
#define j0 j1347829
#define j1 j234892
#define BIT(n) (1LL<<(n))
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() )
#define EB emplace_back
#define PB push_back
#define fcout cout << fixed << setprecision(12)
#define fcerr cerr << fixed << setprecision(12)
#define print(x) cout << (x) << '\n'
#define printE(x) cout << (x) << endl;
#define fprint(x) cout << fixed << setprecision(12) << (x) << '\n'
# define BYE(a) do { cout << (a) << endl; return ; } while (false)
#define LB lower_bound
#define UB upper_bound
#define LBI(c, x) distance((c).begin(), lower_bound((c).begin(), (c).end(), (x)))
#define UBI(c, x) distance((c).begin(), upper_bound((c).begin(), (c).end(), (x)))
#ifdef DEBUG
#define DBG(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); _err(cerr
    ,_it, args); }
#define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); _err(std
    ::cerr,_it, args); }
#else
#define DBG(args...) {};
#define ERR(args...) {};
#endif
void _err(std::ostream& cerr, istream_iterator<string> it){cerr << endl;}
template<typename T, typename... Args>
void _err(std::ostream& cerr, istream_iterator<string> it, T a, Args... args){
cerr << *it << " = " << a << " ";
_err(cerr, ++it, args...);
}
namespace aux{
template<std::size_t...>
struct seq{
};
template<std::size_t N, std::size_t... Is>
struct gen_seq : gen_seq<N - 1, N - 1, Is...>{
};
template<std::size_t... Is>
struct gen_seq<0, Is...> : seq<Is...>{
};
template<class Ch, class Tr, class Tuple, std::size_t... Is>
void print_tuple(std::basic_ostream<Ch, Tr>& os, Tuple const& t, seq<Is...>){
using swallow = int[];
(void) swallow{0, (void(os << (Is == 0 ? "" : ",") << std::get<Is>(t)), 0)...};
}
template<class Ch, class Tr, class Tuple, std::size_t... Is>
void read_tuple(std::basic_istream<Ch, Tr>& os, Tuple& t, seq<Is...>){
using swallow = int[];
(void) swallow{0, (void(os >> std::get<Is>(t)), 0)...};
}
} // aux::
template<class Ch, class Tr, class... Args>
auto operator<<(std::basic_ostream<Ch, Tr>& os, std::tuple<Args...> const& t)
-> std::basic_ostream<Ch, Tr>&{
os << "(";
aux::print_tuple(os, t, aux::gen_seq<sizeof...(Args)>());
return os << ")";
}
template<class Ch, class Tr, class... Args>
auto operator>>(std::basic_istream<Ch, Tr>& os, std::tuple<Args...>& t)
-> std::basic_istream<Ch, Tr>&{
aux::read_tuple(os, t, aux::gen_seq<sizeof...(Args)>());
return os;
}
template<class T>
inline bool chmax(T& a, const T& b){
if(a < b){
a = b;
return 1;
}
return 0;
}
template<class T>
inline bool chmin(T& a, const T& b){
if(b < a){
a = b;
return 1;
}
return 0;
}
template<typename T, typename U>
istream& operator>>(istream& is, pair<T, U>& V){
is >> V.F >> V.S;
return is;
}
template<typename T>
istream& operator>>(istream& is, vector<T>& V){
for(auto&& ele : V)is >> ele;
return is;
}
template<typename T>
ostream& operator<<(ostream& os, const vector<T> V){
os << "[";
int cnt = 0;
T curr;
if(!V.empty()){
for(int i = 0; i < V.size() - 1; ++i){
if(V[i] == curr)cnt++;
else cnt = 0;
if(cnt == 4)os << "... ";
if(cnt < 4)
os << i << ":" << V[i] << " ";
curr = V[i];
}
os << V.size() - 1 << ":" << V.back();
}
os << "]\n";
return os;
}
template<typename T, typename U>
ostream& operator<<(ostream& os, const pair<T, U> P){
os << "(";
os << P.first << "," << P.second;
os << ")";
return os;
}
template<typename T, typename U>
ostream& operator<<(ostream& os, const set<T, U> V){
os << "{";
if(!V.empty()){
auto it = V.begin();
for(int i = 0; i < V.size() - 1; ++i){
os << *it << " ";
it++;
}
os << *it;
}
os << "}\n";
return os;
}
template<typename K, typename H, typename P>
ostream& operator<<(ostream& os, const unordered_set<K, H, P> V){
os << "{";
if(!V.empty()){
auto it = V.begin();
for(int i = 0; i < V.size() - 1; ++i){
os << *it << " ";
it++;
}
os << *it;
}
os << "}\n";
return os;
}
template<typename K, typename C>
ostream& operator<<(ostream& os, const multiset<K, C> V){
os << "{";
if(!V.empty()){
auto it = V.begin();
for(int i = 0; i < V.size() - 1; ++i){
os << *it << " ";
it++;
}
os << *it;
}
os << "}";
return os;
}
template<typename K, typename T, typename C>
ostream& operator<<(ostream& os, const map<K, T, C> V){
os << "{";
if(!V.empty()){
auto it = V.begin();
for(int i = 0; i < V.size() - 1; ++i){
os << "(";
os << it->first << "," << it->second;
os << ") ";
it++;
}
os << "(";
os << it->first << "," << it->second;
os << ")";
}
os << "}\n";
return os;
}
template<typename K, typename T, typename C>
ostream& operator<<(ostream& os, const unordered_map<K, T, C> V){
os << "{";
if(!V.empty()){
auto it = V.begin();
for(int i = 0; i < V.size() - 1; ++i){
os << "(";
os << it->first << "," << it->second;
os << ") ";
it++;
}
os << "(";
os << it->first << "," << it->second;
os << ")";
}
os << "}\n";
return os;
}
template<typename T>
ostream& operator<<(ostream& os, const deque<T> V){
os << "[";
if(!V.empty()){
for(int i = 0; i < V.size() - 1; ++i){
os << V[i] << "->";
}
if(!V.empty())os << V.back();
}
os << "]\n";
return os;
};
template<typename T, typename Cont, typename Comp>
ostream& operator<<(ostream& os, const priority_queue<T, Cont, Comp> V){
priority_queue<T, Cont, Comp> _V = V;
os << "[";
if(!_V.empty()){
while(_V.size() > 1){
os << _V.top() << "->";
_V.pop();
}
os << _V.top();
}
os << "]\n";
return os;
};
template<class F>
struct y_combinator{
F f; // the lambda will be stored here
// a forwarding operator():
template<class... Args>
decltype(auto) operator()(Args&& ... args) const{
// we pass ourselves to f, then the arguments.
// the lambda should take the first argument as `auto&& recurse` or similar.
return f(*this, std::forward<Args>(args)...);
}
};
// helper function that deduces the type of the lambda:
template<class F>
y_combinator<std::decay_t<F>> recursive(F&& f){
return {std::forward<F>(f)};
}
struct hash_pair{
template<class T1, class T2>
size_t operator()(const pair<T1, T2>& p) const{
auto hash1 = hash<T1>{}(p.first);
auto hash2 = hash<T2>{}(p.second);
return hash1^hash2;
}
};
template<typename U>
auto vec(int n, U v){
return std::vector(n, v);
}
template<typename... Args>
auto vec(int n, Args... args){
auto val = vec(std::forward<Args>(args)...);
return std::vector<decltype(val)>(n, std::move(val));
}
const double PI = 2*acos(.0);
const int INF = 0x3f3f3f3f;
template<class T>
inline T ceil(T a, T b){return (a + b - 1)/b;}
inline long long popcount(ll x){return __builtin_popcountll(x);}
template<typename K>
struct Matrix{
typedef vector<K> arr;
typedef vector<arr> mat;
mat dat;
Matrix(size_t r, size_t c) : dat(r, arr(c, K())){}
Matrix(mat dat) : dat(dat){}
size_t size() const{return dat.size();}
bool empty() const{return size() == 0;}
arr& operator[](size_t k){return dat[k];}
const arr& operator[](size_t k) const{return dat[k];}
static Matrix cross(const Matrix& A, const Matrix& B){
Matrix res(A.size(), B[0].size());
for(int i = 0; i < (int) A.size(); i++)
for(int j = 0; j < (int) B[0].size(); j++)
for(int k = 0; k < (int) B.size(); k++)
res[i][j] |= A[i][k]&B[k][j];
return res;
}
static Matrix identity(size_t n){
Matrix res(n, n);
for(int i = 0; i < (int) n; i++) res[i][i] = K(1);
return res;
}
Matrix pow(long long n) const{
assert(n >= 0);
Matrix a(dat), res = identity(size());
while(n){
if(n&1) res = cross(res, a);
a = cross(a, a);
n >>= 1;
}
return res;
}
template<typename T>
using ET = enable_if<is_floating_point<T>::value>;
template<typename T>
using EF = enable_if<!is_floating_point<T>::value>;
template<typename T, typename ET<T>::type* = nullptr>
static bool is_zero(T x){return abs(x) < 1e-8;}
template<typename T, typename EF<T>::type* = nullptr>
static bool is_zero(T x){return x == T(0);}
template<typename T, typename ET<T>::type* = nullptr>
static bool compare(T x, T y){return abs(x) < abs(y);}
template<typename T, typename EF<T>::type* = nullptr>
static bool compare(T x, T y){
(void) x;
return y != T(0);
}
// assume regularity
static Matrix gauss_jordan(const Matrix& A, const Matrix& B){
int n = A.size(), l = B[0].size();
Matrix C(n, n + l);
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++)
C[i][j] = A[i][j];
for(int j = 0; j < l; j++)
C[i][n + j] = B[i][j];
}
for(int i = 0; i < n; i++){
int p = i;
for(int j = i; j < n; j++)
if(compare(C[p][i], C[j][i])) p = j;
swap(C[i], C[p]);
if(is_zero(C[i][i])) return Matrix(0, 0);
for(int j = i + 1; j < n + l; j++) C[i][j] /= C[i][i];
for(int j = 0; j < n; j++){
if(i == j) continue;
for(int k = i + 1; k < n + l; k++)
C[j][k] -= C[j][i]*C[i][k];
}
}
Matrix res(n, l);
for(int i = 0; i < n; i++)
for(int j = 0; j < l; j++)
res[i][j] = C[i][n + j];
return res;
}
Matrix inv() const{
Matrix B = identity(size());
return gauss_jordan(*this, B);
}
static arr linear_equations(const Matrix& A, const arr& b){
Matrix B(b.size(), 1);
for(int i = 0; i < (int) b.size(); i++) B[i][0] = b[i];
Matrix tmp = gauss_jordan(A, B);
arr res(tmp.size());
for(int i = 0; i < (int) tmp.size(); i++) res[i] = tmp[i][0];
return res;
}
K determinant() const{
Matrix A(dat);
K res(1);
int n = size();
for(int i = 0; i < n; i++){
int p = i;
for(int j = i; j < n; j++)
if(compare(A[p][i], A[j][i])) p = j;
if(i != p) swap(A[i], A[p]), res = -res;
if(is_zero(A[i][i])) return K(0);
res *= A[i][i];
for(int j = i + 1; j < n; j++) A[i][j] /= A[i][i];
for(int j = i + 1; j < n; j++)
for(int k = i + 1; k < n; k++)
A[j][k] -= A[j][i]*A[i][k];
}
return res;
}
static K sigma(K x, long long n){
Matrix A(2, 2);
A[0][0] = x;
A[0][1] = 0;
A[1][0] = 1;
A[1][1] = 1;
return A.pow(n)[1][0];
}
};
void solve(std::istream& cin, std::ostream& cout, std::ostream& cerr){
ll N, M, T;
cin >> N >> M >> T;
Matrix<int> g(N, N);
REP(i, M){
int a, b;
cin >> a >> b;
g[a][b] = 1;
}
int ans = 0;
g = g.pow(T);
DBG(g.dat)
REP(i,N)ans += g[0][i];
print(ans);
}
#undef int
int main() {
istream& in(cin);
ostream& out(cout);
ostringstream err;
in.tie(0); ios::sync_with_stdio(0);
solve(in, out, err);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0