結果
問題 | No.1341 真ん中を入れ替えて門松列 |
ユーザー | heno239 |
提出日時 | 2021-01-15 22:27:36 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 7,447 bytes |
コンパイル時間 | 2,464 ms |
コンパイル使用メモリ | 170,220 KB |
実行使用メモリ | 177,040 KB |
最終ジャッジ日時 | 2024-11-26 16:13:50 |
合計ジャッジ時間 | 23,897 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,352 KB |
testcase_01 | AC | 2 ms
13,636 KB |
testcase_02 | AC | 2 ms
13,632 KB |
testcase_03 | AC | 2 ms
13,344 KB |
testcase_04 | AC | 2 ms
13,480 KB |
testcase_05 | AC | 2 ms
13,472 KB |
testcase_06 | AC | 15 ms
6,820 KB |
testcase_07 | AC | 503 ms
6,816 KB |
testcase_08 | AC | 7 ms
6,816 KB |
testcase_09 | AC | 602 ms
6,816 KB |
testcase_10 | AC | 1,998 ms
6,816 KB |
testcase_11 | TLE | - |
testcase_12 | AC | 1,848 ms
6,820 KB |
testcase_13 | TLE | - |
testcase_14 | AC | 11 ms
6,820 KB |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | AC | 1,812 ms
177,040 KB |
ソースコード
#pragma GCC optimize("Ofast") //#pragma GCC target ("sse4") #include<iostream> #include<string> #include<cstdio> #include<vector> #include<cmath> #include<algorithm> #include<functional> #include<iomanip> #include<queue> #include<ciso646> #include<random> #include<map> #include<set> #include<bitset> #include<stack> #include<unordered_map> #include<unordered_set> #include<utility> #include<cassert> #include<complex> #include<numeric> #include<array> using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; constexpr ll mod =1000000007; const ll INF = mod * mod; typedef pair<int, int>P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i<n;i++) #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair<ll, ll> LP; typedef double ld; typedef pair<ld, ld> LDP; const ld eps = 1e-12; const ld pi = acosl(-1.0); ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } struct modint { ll n; modint() :n(0) { ; } modint(ll m) :n(m) { if (n >= mod)n %= mod; else if (n < 0)n = (n % mod + mod) % mod; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } //const int max_n = 1 << 18; //modint fact[max_n], factinv[max_n]; //void init_f() { // fact[0] = modint(1); // for (int i = 0; i < max_n - 1; i++) { // fact[i + 1] = fact[i] * modint(i + 1); // } // factinv[max_n - 1] = modint(1) / fact[max_n - 1]; // for (int i = max_n - 2; i >= 0; i--) { // factinv[i] = factinv[i + 1] * modint(i + 1); // } //} //modint comb(int a, int b) { // if (a < 0 || b < 0 || a < b)return 0; // return fact[a] * factinv[b] * factinv[a - b]; //} //modint combP(int a, int b) { // if (a < 0 || b < 0 || a < b)return 0; // return fact[a] * factinv[a - b]; //} int max_n; const int mn = 13000; struct edge { int to, cap; ll cost; int rev; }; vector<edge> G[mn]; P par[mn]; ll dist[mn]; void add_edge(int from, int to, int cap, ll cost) { G[from].push_back({ to,cap,cost,(int)G[to].size() }); G[to].push_back({ from,0,-cost,(int)G[from].size() - 1 }); max_n = max({ max_n, from + 1, to + 1 }); } void add_edge2(int from, int to, int cap, ll cost) { G[from].push_back({ to,cap,cost,-1 }); //G[to].push_back({ from,0,-cost,(int)G[from].size() - 1 }); max_n = max({ max_n, from + 1, to + 1 }); } ll minimum_road(int s, int t) { fill(par, par + max_n, P{ -1,-1 }); fill(dist, dist + max_n, INF); dist[s] = 0; priority_queue<LP, vector<LP>, greater<LP>> q; q.push({ 0,s }); while (!q.empty()) { LP p = q.top(); q.pop(); int id = p.second; if (id == t)continue; if (p.first > dist[id])continue; rep(j, G[id].size()) { if (G[id][j].cap > 0) { int to = G[id][j].to; ll nd = p.first + G[id][j].cost; if (nd < dist[to]) { dist[to] = nd; par[to] = { id,j }; q.push({ dist[to],to }); } } } } int cur = t; while (cur != s) { int p = par[cur].first; int j = par[cur].second; if (p < 0)return -1; G[p][j].cap --; if (G[p][j].rev >= 0) { G[cur][G[p][j].rev].cap++; } cur = p; } return dist[t]; } ll minimum_cost_flow(int s, int t, int k,ll sup) { ll ret = 0; rep(i, k) { ll z = minimum_road(s, t); if (z < 0)return -1; ret += z; if (ret > sup)return ret; } return ret; } struct edge2 { int to; int cap; int rev; }; struct Dinic { private: int n; vector<vector<edge2>> v; vector<int> dist, iter; public: Dinic(int sz) :n(sz), v(sz), dist(sz), iter(sz) {} void add_edge(int from, int to, int cap) { int x = v[to].size(), y = v[from].size(); v[from].push_back({ to,cap,x }); v[to].push_back({ from,0,y }); } void bfs(int s) { fill(dist.begin(), dist.end(), -1); queue<int> q; dist[s] = 0; q.push(s); while (q.size()) { int x = q.front(); q.pop(); rep(i, v[x].size()) { edge2& e = v[x][i]; if (e.cap > 0 && dist[e.to] < 0) { dist[e.to] = dist[x] + 1; q.push(e.to); } } } } int dfs(int x, int t, int f) { if (x == t)return f; for (int& i = iter[x]; i < (int)v[x].size(); ++i) { edge2& e = v[x][i]; if (e.cap > 0 && dist[x] < dist[e.to]) { int d = dfs(e.to, t, min(f, e.cap)); if (d > 0) { e.cap -= d; v[e.to][e.rev].cap += d; return d; } } } return 0; } int max_flow(int s, int t) { int flow = 0; while (1) { bfs(s); if (dist[t] < 0)return flow; fill(iter.begin(), iter.end(), 0); int f; while ((f = dfs(s, t, mod)) > 0)flow += f; } } }; void solve() { int n; ll m; cin >> n >> m; vector<int> a(n), b(n), c(n); vector<int> vb; ll sum = 0; rep(i, n) { cin >> a[i] >> b[i] >> c[i]; vb.push_back(b[i]); sum += b[i] + max(a[i], c[i]); } sort(all(vb)); //mcf_graph<int, ll> mg(4*n+2); Dinic dc(3 * n + 2); rep1(i, n-1) { add_edge(i, i - 1, mod, 0); add_edge(i - 1 + n, i + n, mod, 0); dc.add_edge(i, i - 1, mod); dc.add_edge(i - 1 + n, i + n, mod); } int sta = 3 * n, goa = 3 * n + 1; rep(i, n) { add_edge(i, goa, 1, vb[i]); add_edge(i + n, goa, 1, 0); dc.add_edge(i, goa, 1); dc.add_edge(i + n, goa, 1); } rep(i, n) { int id = i + 2 * n; add_edge(sta, id, 1, 0); dc.add_edge(sta, id, 1); int le, ri; le = lower_bound(all(vb), min(a[i], c[i])) - vb.begin(); //cout << "?? " << le << "\n"; //[0,le) if (le - 1 >= 0) { add_edge(id, le - 1, 1, 0); dc.add_edge(id, le - 1, 1); } ri = upper_bound(all(vb), max(a[i], c[i])) - vb.begin(); //[ri,n) if (ri < n) { add_edge(id, ri + n, 1, max(a[i], c[i])); dc.add_edge(id, ri + n, 1); } } int f = dc.max_flow(sta, goa); if (f != n) { cout << "NO\n"; } else { cout << "YES\n"; ll sum1 = 0; vector<int> pl; rep(i, n) { pl.push_back(max(a[i], c[i])); } sort(all(pl), greater<int>()); rep(i, n)sum1 += max(pl[i], vb[i]); if (sum1 < m) { //cout << "nande\n"; cout << "NO\n"; } else { ll val = minimum_cost_flow(sta, goa, n, sum - m); sum -= val; if (sum >= m) { cout << "KADOMATSU!" << "\n"; } else { cout << "NO\n"; } } } } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(15); //init_f(); //init(); //expr(); //int t; cin >> t; rep(i,t) solve(); return 0; }