結果

問題 No.1341 真ん中を入れ替えて門松列
ユーザー heno239heno239
提出日時 2021-01-15 22:27:36
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 7,447 bytes
コンパイル時間 2,709 ms
コンパイル使用メモリ 169,712 KB
実行使用メモリ 13,468 KB
最終ジャッジ日時 2024-05-05 00:29:05
合計ジャッジ時間 14,133 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,752 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 14 ms
5,376 KB
testcase_07 AC 485 ms
5,796 KB
testcase_08 AC 6 ms
5,504 KB
testcase_09 AC 573 ms
5,888 KB
testcase_10 AC 1,950 ms
6,944 KB
testcase_11 AC 1,983 ms
6,940 KB
testcase_12 AC 1,836 ms
6,940 KB
testcase_13 TLE -
testcase_14 AC 12 ms
6,944 KB
testcase_15 TLE -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast")
//#pragma GCC target ("sse4")

#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
using namespace std;

//#define int long long
typedef long long ll;

typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod =1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acosl(-1.0);

ll mod_pow(ll x, ll n, ll m = mod) {
	if (n < 0) {
		ll res = mod_pow(x, -n, m);
		return mod_pow(res, m - 2, m);
	}
	if (abs(x) >= m)x %= m;
	if (x < 0)x += m;
	ll res = 1;
	while (n) {
		if (n & 1)res = res * x % m;
		x = x * x % m; n >>= 1;
	}
	return res;
}
struct modint {
	ll n;
	modint() :n(0) { ; }
	modint(ll m) :n(m) {
		if (n >= mod)n %= mod;
		else if (n < 0)n = (n % mod + mod) % mod;
	}
	operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
	if (n == 0)return modint(1);
	modint res = (a * a) ^ (n / 2);
	if (n % 2)res = res * a;
	return res;
}

ll inv(ll a, ll p) {
	return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
//const int max_n = 1 << 18;
//modint fact[max_n], factinv[max_n];
//void init_f() {
//	fact[0] = modint(1);
//	for (int i = 0; i < max_n - 1; i++) {
//		fact[i + 1] = fact[i] * modint(i + 1);
//	}
//	factinv[max_n - 1] = modint(1) / fact[max_n - 1];
//	for (int i = max_n - 2; i >= 0; i--) {
//		factinv[i] = factinv[i + 1] * modint(i + 1);
//	}
//}
//modint comb(int a, int b) {
//	if (a < 0 || b < 0 || a < b)return 0;
//	return fact[a] * factinv[b] * factinv[a - b];
//}
//modint combP(int a, int b) {
//	if (a < 0 || b < 0 || a < b)return 0;
//	return fact[a] * factinv[a - b];
//}

int max_n;
const int mn = 13000;
struct edge {
	int to, cap; ll cost; int rev;
};
vector<edge> G[mn];
P par[mn];
ll dist[mn];
void add_edge(int from, int to, int cap, ll cost) {
	G[from].push_back({ to,cap,cost,(int)G[to].size() });
	G[to].push_back({ from,0,-cost,(int)G[from].size() - 1 });
	max_n = max({ max_n, from + 1, to + 1 });
}
void add_edge2(int from, int to, int cap, ll cost) {
	G[from].push_back({ to,cap,cost,-1 });
	//G[to].push_back({ from,0,-cost,(int)G[from].size() - 1 });
	max_n = max({ max_n, from + 1, to + 1 });
}
ll minimum_road(int s, int t) {
	fill(par, par + max_n, P{ -1,-1 });
	fill(dist, dist + max_n, INF);
	dist[s] = 0;
	priority_queue<LP, vector<LP>, greater<LP>> q; q.push({ 0,s });
	while (!q.empty()) {
		LP p = q.top(); q.pop();
		int id = p.second;
		if (id == t)continue;
		if (p.first > dist[id])continue;
		rep(j, G[id].size()) {
			if (G[id][j].cap > 0) {
				int to = G[id][j].to;
				ll nd = p.first + G[id][j].cost;
				if (nd < dist[to]) {
					dist[to] = nd;
					par[to] = { id,j };
					q.push({ dist[to],to });
				}
			}
		}
	}
	int cur = t;
	while (cur != s) {
		int p = par[cur].first; int j = par[cur].second;
		if (p < 0)return -1;
		G[p][j].cap --;
		if (G[p][j].rev >= 0) {
			G[cur][G[p][j].rev].cap++;
		}
		cur = p;
	}
	return dist[t];
}
ll minimum_cost_flow(int s, int t, int k,ll sup) {
	ll ret = 0;
	rep(i, k) {
		ll z = minimum_road(s, t);
		if (z < 0)return -1;
		ret += z;
		if (ret > sup)return ret;
	}
	return ret;
}
struct edge2 { int to; int cap; int rev; };
struct Dinic {
private:
	int n;
	vector<vector<edge2>> v;
	vector<int> dist, iter;
public:
	Dinic(int sz) :n(sz), v(sz), dist(sz), iter(sz) {}

	void add_edge(int from, int to, int cap) {
		int x = v[to].size(), y = v[from].size();
		v[from].push_back({ to,cap,x });
		v[to].push_back({ from,0,y });
	}

	void bfs(int s) {
		fill(dist.begin(), dist.end(), -1);
		queue<int> q;
		dist[s] = 0;
		q.push(s);
		while (q.size()) {
			int x = q.front(); q.pop();
			rep(i, v[x].size()) {
				edge2& e = v[x][i];
				if (e.cap > 0 && dist[e.to] < 0) {
					dist[e.to] = dist[x] + 1;
					q.push(e.to);
				}
			}
		}
	}

	int dfs(int x, int t, int f) {
		if (x == t)return f;
		for (int& i = iter[x]; i < (int)v[x].size(); ++i) {
			edge2& e = v[x][i];
			if (e.cap > 0 && dist[x] < dist[e.to]) {
				int d = dfs(e.to, t, min(f, e.cap));
				if (d > 0) {
					e.cap -= d;
					v[e.to][e.rev].cap += d;
					return d;
				}
			}
		}
		return 0;
	}

	int max_flow(int s, int t) {
		int flow = 0;
		while (1) {
			bfs(s);
			if (dist[t] < 0)return flow;
			fill(iter.begin(), iter.end(), 0);
			int f;
			while ((f = dfs(s, t, mod)) > 0)flow += f;
		}
	}
};



void solve() {
	int n; ll m; cin >> n >> m;
	vector<int> a(n), b(n), c(n);
	vector<int> vb;
	ll sum = 0;
	rep(i, n) {
		cin >> a[i] >> b[i] >> c[i];
		vb.push_back(b[i]);
		sum += b[i] + max(a[i], c[i]);
	}
	sort(all(vb));
    //mcf_graph<int, ll> mg(4*n+2);
	Dinic dc(3 * n + 2);
	rep1(i, n-1) {
		add_edge(i, i - 1, mod, 0);
		add_edge(i - 1 + n, i + n, mod, 0);
        dc.add_edge(i, i - 1, mod);
        dc.add_edge(i - 1 + n, i + n, mod);
	}
	int sta = 3 * n, goa = 3 * n + 1;
	rep(i, n) {
		add_edge(i, goa, 1, vb[i]);
		add_edge(i + n, goa, 1, 0);
		dc.add_edge(i, goa, 1);
		dc.add_edge(i + n, goa, 1);
	}
	rep(i, n) {
		int id = i + 2 * n;
		add_edge(sta, id, 1, 0);
        dc.add_edge(sta, id, 1);
		int le, ri;
		le = lower_bound(all(vb), min(a[i], c[i])) - vb.begin();
		//cout << "?? " << le << "\n";
		//[0,le)
		if (le - 1 >= 0) {
			add_edge(id, le - 1, 1, 0);
            dc.add_edge(id, le - 1, 1);
		}
		ri = upper_bound(all(vb), max(a[i], c[i])) - vb.begin();
		//[ri,n)
		if (ri < n) {
			add_edge(id, ri + n, 1, max(a[i], c[i]));
            dc.add_edge(id, ri + n, 1);
		}
	}
    int f = dc.max_flow(sta, goa);
    if (f != n) {
        cout << "NO\n";
    }
    else {
		cout << "YES\n";
		ll sum1 = 0;
		vector<int> pl;
		rep(i, n) {
			pl.push_back(max(a[i], c[i]));
		}
		sort(all(pl), greater<int>());
		rep(i, n)sum1 += max(pl[i], vb[i]);
		if (sum1 < m) {
			//cout << "nande\n";
			cout << "NO\n";
		}
		else {
			ll val = minimum_cost_flow(sta, goa, n, sum - m);
			sum -= val;
			if (sum >= m) {
				cout << "KADOMATSU!" << "\n";
			}
			else {
				cout << "NO\n";
			}
		}
	}
}

signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	//cout << fixed << setprecision(15);
	//init_f();
	//init();
	//expr();
	//int t; cin >> t; rep(i,t)
	solve();
	return 0;
}
0