結果
問題 | No.1341 真ん中を入れ替えて門松列 |
ユーザー | りあん |
提出日時 | 2021-01-15 22:29:11 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,298 ms / 2,000 ms |
コード長 | 9,302 bytes |
コンパイル時間 | 2,667 ms |
コンパイル使用メモリ | 223,932 KB |
最終ジャッジ日時 | 2025-01-17 19:49:25 |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 14 |
ソースコード
#include<bits/stdc++.h> #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> #include <algorithm> #include <utility> #include <vector> namespace atcoder { namespace internal { template <class E> struct csr { std::vector<int> start; std::vector<E> elist; csr(int n, const std::vector<std::pair<int, E>>& edges) : start(n + 1), elist(edges.size()) { for (auto e : edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e : edges) { elist[counter[e.first]++] = e.second; } } }; } // namespace internal } // namespace atcoder #include <vector> namespace atcoder { namespace internal { template <class T> struct simple_queue { std::vector<T> payload; int pos = 0; void reserve(int n) { payload.reserve(n); } int size() const { return int(payload.size()) - pos; } bool empty() const { return pos == int(payload.size()); } void push(const T& t) { payload.push_back(t); } T& front() { return payload[pos]; } void clear() { payload.clear(); pos = 0; } void pop() { pos++; } }; } // namespace internal } // namespace atcoder namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); assert(0 <= cost); int m = int(_edges.size()); _edges.push_back({from, to, cap, 0, cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(_edges.size()); assert(0 <= i && i < m); return _edges[i]; } std::vector<edge> edges() { return _edges; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); int m = int(_edges.size()); std::vector<int> edge_idx(m); auto g = [&]() { std::vector<int> degree(_n), redge_idx(m); std::vector<std::pair<int, _edge>> elist; elist.reserve(2 * m); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] = degree[e.from]++; redge_idx[i] = degree[e.to]++; elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}}); elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}}); } auto _g = internal::csr<_edge>(_n, elist); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] += _g.start[e.from]; redge_idx[i] += _g.start[e.to]; _g.elist[edge_idx[i]].rev = redge_idx[i]; _g.elist[redge_idx[i]].rev = edge_idx[i]; } return _g; }(); auto result = slope(g, s, t, flow_limit); for (int i = 0; i < m; i++) { auto e = g.elist[edge_idx[i]]; _edges[i].flow = _edges[i].cap - e.cap; } return result; } private: int _n; std::vector<edge> _edges; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g, int s, int t, Cap flow_limit) { std::vector<std::pair<Cost, Cost>> dual_dist(_n); std::vector<int> prev_e(_n); std::vector<bool> vis(_n); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::vector<int> que_min; std::vector<Q> que; auto dual_ref = [&]() { for (int i = 0; i < _n; i++) { dual_dist[i].second = std::numeric_limits<Cost>::max(); } std::fill(vis.begin(), vis.end(), false); que_min.clear(); que.clear(); size_t heap_r = 0; dual_dist[s].second = 0; que_min.push_back(s); while (!que_min.empty() || !que.empty()) { int v; if (!que_min.empty()) { v = que_min.back(); que_min.pop_back(); } else { while (heap_r < que.size()) { heap_r++; std::push_heap(que.begin(), que.begin() + heap_r); } v = que.front().to; std::pop_heap(que.begin(), que.end()); que.pop_back(); heap_r--; } if (vis[v]) continue; vis[v] = true; if (v == t) break; Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second; for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto e = g.elist[i]; if (!e.cap) continue; Cost cost = e.cost - dual_dist[e.to].first + dual_v; if (dual_dist[e.to].second - dist_v > cost) { Cost dist_to = dist_v + cost; dual_dist[e.to].second = dist_to; prev_e[e.to] = e.rev; if (dist_to == dist_v) { que_min.push_back(e.to); } else { que.push_back(Q{dist_to, e.to}); } } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}}; while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = g.elist[prev_e[v]].to) { c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap); } for (int v = t; v != s; v = g.elist[prev_e[v]].to) { auto& e = g.elist[prev_e[v]]; e.cap += c; g.elist[e.rev].cap -= c; } Cost d = -dual_dist[s].first; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } }; } // namespace atcoder using namespace std; const int M = 1000000007; using P = pair<int, int>; int main() { cin.tie(0); ios::sync_with_stdio(0); int n; long long m; cin >> n >> m; vector<long long> a(n), b(n), c(n); long long sum = 0; for (int i = 0; i < n; ++i) { cin >> a[i] >> b[i] >> c[i]; if (a[i] > c[i]) { swap(a[i], c[i]); } sum += b[i] + c[i]; } int N = n * 4 + 2; atcoder::mcf_graph<int, long long> mcf(N); int S = N - 2, T = N - 1; vector<int> aidx(n), cidx(n); for (int i = 0; i < n; ++i) { aidx[i] = i; cidx[i] = i; } sort(aidx.begin(), aidx.end(), [&](const int& i, const int& j){ return a[i] < a[j]; }); sort(cidx.begin(), cidx.end(), [&](const int& i, const int& j){ return c[i] < c[j]; }); for (int i = 0; i < n; ++i) { mcf.add_edge(S, i, 1, 0); mcf.add_edge(n + i, n * 3 + i, 1, 0); mcf.add_edge(n * 2 + i, n * 3 + i, 1, c[i]); mcf.add_edge(n * 3 + i, T, 1, 0); if (i > 0) { mcf.add_edge(n + aidx[i - 1], n + aidx[i], n, 0); mcf.add_edge(n * 2 + cidx[i], n * 2 + cidx[i - 1], n, 0); } for (int j = 0; j < n; ++j) { if (a[aidx[j]] > b[i]) { mcf.add_edge(i, n + aidx[j], 1, b[i]); break; } } for (int j = n - 1; j >= 0; --j) { if (c[cidx[j]] < b[i]) { mcf.add_edge(i, n * 2 + cidx[j], 1, 0); break; } } } auto f = mcf.flow(S, T, n); if (f.first < n) { cout << "NO\n"; } else if (sum - f.second >= m) { cout << "YES\nKADOMATSU!\n"; } else { cout << "YES\nNO\n"; } return 0; }