結果
問題 | No.1341 真ん中を入れ替えて門松列 |
ユーザー | heno239 |
提出日時 | 2021-01-15 22:34:56 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 9,757 bytes |
コンパイル時間 | 2,643 ms |
コンパイル使用メモリ | 172,120 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-05-05 00:37:11 |
合計ジャッジ時間 | 18,217 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 10 ms
5,376 KB |
testcase_07 | AC | 610 ms
5,376 KB |
testcase_08 | AC | 5 ms
5,376 KB |
testcase_09 | AC | 1,057 ms
5,376 KB |
testcase_10 | AC | 870 ms
5,376 KB |
testcase_11 | AC | 903 ms
5,376 KB |
testcase_12 | AC | 787 ms
5,632 KB |
testcase_13 | AC | 1,583 ms
5,504 KB |
testcase_14 | TLE | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | AC | 731 ms
5,504 KB |
ソースコード
//#pragma GCC optimize("Ofast") //#pragma GCC target ("sse4") #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include<iostream> #include<string> #include<cstdio> #include<vector> #include<cmath> #include<algorithm> #include<functional> #include<iomanip> #include<queue> #include<ciso646> #include<random> #include<map> #include<set> #include<bitset> #include<stack> #include<unordered_map> #include<unordered_set> #include<utility> #include<cassert> #include<complex> #include<numeric> #include<array> using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; constexpr ll mod = 1000000007; const ll INF = mod * mod; typedef pair<int, int>P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i<n;i++) #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair<ll, ll> LP; typedef double ld; typedef pair<ld, ld> LDP; const ld eps = 1e-12; const ld pi = acosl(-1.0); ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } struct modint { ll n; modint() :n(0) { ; } modint(ll m) :n(m) { if (n >= mod)n %= mod; else if (n < 0)n = (n % mod + mod) % mod; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } //const int max_n = 1 << 18; //modint fact[max_n], factinv[max_n]; //void init_f() { // fact[0] = modint(1); // for (int i = 0; i < max_n - 1; i++) { // fact[i + 1] = fact[i] * modint(i + 1); // } // factinv[max_n - 1] = modint(1) / fact[max_n - 1]; // for (int i = max_n - 2; i >= 0; i--) { // factinv[i] = factinv[i + 1] * modint(i + 1); // } //} //modint comb(int a, int b) { // if (a < 0 || b < 0 || a < b)return 0; // return fact[a] * factinv[b] * factinv[a - b]; //} //modint combP(int a, int b) { // if (a < 0 || b < 0 || a < b)return 0; // return fact[a] * factinv[a - b]; //} template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({ from, int(g[from].size()) }); g[from].push_back(_edge{ to, int(g[to].size()), cap, cost }); g[to].push_back(_edge{ from, int(g[from].size()) - 1, 0, -cost }); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector<Cost> dual(_n, 0), dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue<Q> que; dist[s] = 0; que.push(Q{ 0, s }); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{ dist[e.to], e.to }); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({ flow, cost }); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({ flow, cost }); prev_cost = cost; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; void solve() { int n; ll m; cin >> n >> m; vector<int> a(n), b(n), c(n); vector<int> vb; ll sum = 0; rep(i, n) { cin >> a[i] >> b[i] >> c[i]; vb.push_back(b[i]); sum += b[i] + max(a[i], c[i]); } sort(all(vb)); mcf_graph<int, ll> mg(3 * n + 2); rep1(i, n - 1) { mg.add_edge(i, i - 1, n, 0); mg.add_edge(i - 1 + n, i + n, n, 0); } int sta = 3 * n, goa = 3 * n + 1; rep(i, n) { mg.add_edge(i, goa, 1, vb[i]); mg.add_edge(i + n, goa, 1, 0); } rep(i, n) { int id = i + 2 * n; mg.add_edge(sta, id, 1, 0); int le, ri; le = lower_bound(all(vb), min(a[i], c[i])) - vb.begin(); //cout << "?? " << le << "\n"; //[0,le) if (le - 1 >= 0) { mg.add_edge(id, le - 1, 1, 0); } ri = upper_bound(all(vb), max(a[i], c[i])) - vb.begin(); //[ri,n) if (ri < n) { mg.add_edge(id, ri + n, 1, max(a[i], c[i])); } } LP p = mg.flow(sta, goa, n); ll ma = p.second; if (p.first != n)ma = -1; if (ma < 0) { cout << "NO\n"; } else { cout << "YES\n"; ma = sum - ma; if (ma >= m) { cout << "KADOMATSU!" << "\n"; } else { cout << "NO\n"; } } } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(15); //init_f(); //init(); //expr(); //int t; cin >> t; rep(i,t) solve(); return 0; }