結果
問題 | No.1341 真ん中を入れ替えて門松列 |
ユーザー | chocorusk |
提出日時 | 2021-01-15 22:35:01 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 7,320 bytes |
コンパイル時間 | 1,829 ms |
コンパイル使用メモリ | 156,136 KB |
実行使用メモリ | 10,624 KB |
最終ジャッジ日時 | 2024-05-05 00:37:31 |
合計ジャッジ時間 | 15,981 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,624 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 14 ms
5,376 KB |
testcase_07 | AC | 1,424 ms
5,888 KB |
testcase_08 | AC | 8 ms
5,632 KB |
testcase_09 | AC | 755 ms
6,016 KB |
testcase_10 | TLE | - |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
ソースコード
#include <cstdio> #include <cstring> #include <iostream> #include <string> #include <cmath> #include <bitset> #include <vector> #include <map> #include <set> #include <queue> #include <deque> #include <algorithm> #include <complex> #include <unordered_map> #include <unordered_set> #include <random> #include <cassert> #include <fstream> #include <utility> #include <functional> #include <time.h> #include <stack> #include <array> #include <list> #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); int from_id = int(g[from].size()); int to_id = int(g[to].size()); if (from == to) to_id++; g[from].push_back(_edge{to, to_id, cap, cost}); g[to].push_back(_edge{from, from_id, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector<Cost> dual(_n, 0), dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue<Q> que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; } // namespace atcoder #define popcount __builtin_popcount using namespace std; using namespace atcoder; typedef long long ll; typedef pair<ll, ll> P; int main() { int n; ll m; cin>>n>>m; ll a[3030], b[3030], c[3030]; vector<P> v(n); for(int i=0; i<n; i++){ cin>>a[i]>>b[i]>>c[i]; if(a[i]>c[i]) swap(a[i], c[i]); v[i]=P(a[i], c[i]); } sort(v.begin(), v.end()); vector<P> w(n); for(int i=0; i<n; i++){ w[i]=P(v[i].second, i); } sort(w.begin(), w.end()); const ll MAX=1e9; int s=4*n, t=4*n+1; mcf_graph<ll, ll> g(4*n+2); for(int i=0; i<n; i++){ g.add_edge(s, i, 1, 0); } for(int i=0; i<n; i++){ int p=lower_bound(v.begin(), v.end(), P(b[i], MAX+7))-v.begin(); if(p<n){ g.add_edge(i, n+p, 1, 0); } } for(int i=0; i<n-1; i++) g.add_edge(n+i, n+i+1, n, 0); for(int i=0; i<n; i++){ int p=lower_bound(w.begin(), w.end(), P(b[i], 0))-w.begin(); if(p>0){ g.add_edge(i, 2*n+p-1, 1, MAX-b[i]); } } for(int i=0; i<n-1; i++) g.add_edge(2*n+i+1, 2*n+i, n, 0); for(int i=0; i<n; i++){ g.add_edge(n+i, 3*n+i, 1, MAX-v[i].second); int p=w[i].second; g.add_edge(2*n+i, 3*n+p, 1, 0); } for(int i=0; i<n; i++) g.add_edge(3*n+i, t, 1, 0); auto res=g.flow(s, t, n); if(res.first<n){ cout<<"NO"<<endl; return 0; } cout<<"YES"<<endl; //cout<<MAX*n-res.second<<endl; if(MAX*n-res.second>=m) cout<<"KADOMATSU!"<<endl; else cout<<"NO"<<endl; return 0; }