結果

問題 No.1341 真ん中を入れ替えて門松列
ユーザー 👑 emthrmemthrm
提出日時 2021-01-15 22:36:10
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 5,913 bytes
コンパイル時間 2,900 ms
コンパイル使用メモリ 225,908 KB
実行使用メモリ 12,576 KB
最終ジャッジ日時 2024-05-05 00:38:30
合計ジャッジ時間 9,386 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,624 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 29 ms
5,376 KB
testcase_07 TLE -
testcase_08 AC 7 ms
5,376 KB
testcase_09 TLE -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <typename T, typename U>
struct PrimalDual {
  struct Edge {
    int dst, rev;
    T cap;
    U cost;
    Edge(int dst, T cap, U cost, int rev) : dst(dst), cap(cap), cost(cost), rev(rev) {}
  };

  std::vector<std::vector<Edge>> graph;

  PrimalDual(int n, const T TINF, const U UINF) : n(n), TINF(TINF), UINF(UINF), graph(n), prev_v(n, -1), prev_e(n, -1), potential(n, 0), dist(n) {}

  void add_edge(int src, int dst, T cap, U cost) {
    // cout << src << ' ' << dst << ' ' << cost << '\n';
    has_negative_edge |= cost < 0;
    graph[src].emplace_back(dst, cap, cost, graph[dst].size());
    graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1);
  }

  U minimum_cost_flow(int s, int t, T flow) {
    U res = 0;
    if (has_negative_edge) {
      bellman_ford(s);
      if (dist[t] == UINF) return UINF;
      res += calc(s, t, flow);
    }
    while (flow > 0) {
      dijkstra(s);
      if (dist[t] == UINF) return UINF;
      res += calc(s, t, flow);
    }
    return res;
  }

  U minimum_cost_flow(int s, int t) {
    U res = 0;
    bellman_ford(s);
    if (potential[t] >= 0 || dist[t] == UINF) return res;
    T tmp = TINF;
    res += calc(s, t, tmp);
    while (true) {
      dijkstra(s);
      if (potential[t] >= 0 || dist[t] == UINF) return res;
      res += calc(s, t, tmp);
    }
  }

  std::pair<T, U> min_cost_max_flow(int s, int t, T flow) {
    T mx = flow;
    U cost = 0;
    if (has_negative_edge) {
      bellman_ford(s);
      if (dist[t] == UINF) return {mx - flow, cost};
      cost += calc(s, t, flow);
    }
    while (flow > 0) {
      dijkstra(s);
      if (dist[t] == UINF) return {mx - flow, cost};
      cost += calc(s, t, flow);
    }
    return {mx - flow, cost};
  }

private:
  using Pui = std::pair<U, int>;

  int n;
  const T TINF;
  const U UINF;
  bool has_negative_edge = false;
  std::vector<int> prev_v, prev_e;
  std::vector<U> potential, dist;
  std::priority_queue<Pui, std::vector<Pui>, std::greater<Pui>> que;

  void bellman_ford(int s) {
    std::fill(dist.begin(), dist.end(), UINF);
    dist[s] = 0;
    bool is_updated = true;
    for (int step = 0; step < n; ++step) {
      is_updated = false;
      for (int i = 0; i < n; ++i) {
        if (dist[i] == UINF) continue;
        for (int j = 0; j < graph[i].size(); ++j) {
          Edge e = graph[i][j];
          if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) {
            dist[e.dst] = dist[i] + e.cost;
            prev_v[e.dst] = i;
            prev_e[e.dst] = j;
            is_updated = true;
          }
        }
      }
      if (!is_updated) break;
    }
    assert(!is_updated);
    for (int i = 0; i < n; ++i) {
      if (dist[i] != UINF) potential[i] += dist[i];
    }
  }

  void dijkstra(int s) {
    std::fill(dist.begin(), dist.end(), UINF);
    dist[s] = 0;
    que.emplace(0, s);
    while (!que.empty()) {
      Pui pr = que.top(); que.pop();
      int ver = pr.second;
      if (dist[ver] < pr.first) continue;
      for (int i = 0; i < graph[ver].size(); ++i) {
        Edge e = graph[ver][i];
        U nx = dist[ver] + e.cost + potential[ver] - potential[e.dst];
        if (e.cap > 0 && dist[e.dst] > nx) {
          dist[e.dst] = nx;
          prev_v[e.dst] = ver;
          prev_e[e.dst] = i;
          que.emplace(dist[e.dst], e.dst);
        }
      }
    }
    for (int i = 0; i < n; ++i) {
      if (dist[i] != UINF) potential[i] += dist[i];
    }
  }

  U calc(int s, int t, T &flow) {
    T f = flow;
    for (int v = t; v != s; v = prev_v[v]) f = std::min(f, graph[prev_v[v]][prev_e[v]].cap);
    flow -= f;
    for (int v = t; v != s; v = prev_v[v]) {
      Edge &e = graph[prev_v[v]][prev_e[v]];
      e.cap -= f;
      graph[v][e.rev].cap += f;
    }
    return potential[t] * f;
  }
};


int main() {
  int n; ll m; cin >> n >> m;
  vector<int> a(n), b(n), c(n);
  REP(i, n) {
    cin >> a[i] >> b[i] >> c[i];
    if (a[i] > c[i]) swap(a[i], c[i]);
  }
  vector<int> a_ord(n), c_ord(n);
  iota(ALL(a_ord), 0);
  sort(ALL(a_ord), [&](int x, int y) { return a[x] < a[y]; });
  sort(ALL(b));
  iota(ALL(c_ord), 0);
  sort(ALL(c_ord), [&](int x, int y) { return c[x] > c[y]; });

  PrimalDual<int, ll> pd(n * 4 + 2, INF, LINF);
  const int s = n * 4, t = n * 4 + 1;
  REP(i, n) pd.add_edge(s, i, 1, 0);
  FOR(i, 1, n) pd.add_edge(n + a_ord[i - 1], n + a_ord[i], n, 0);
  int idx = 0;
  REP(i, n) {
    for (; idx < n && b[idx] < a[a_ord[i]]; ++idx) {
      pd.add_edge(idx, n + a_ord[i], 1, 0);
    }
  }
  FOR(i, 1, n) pd.add_edge(n + n + c_ord[i - 1], n + n + c_ord[i], n, 0);
  idx = n - 1;
  REP(i, n) {
    for (; idx >= 0 && b[idx] > c[c_ord[i]]; --idx) {
      pd.add_edge(idx, n + n + c_ord[i], 1, -b[idx]);
    }
  }
  REP(i, n) {
    pd.add_edge(n + i, n + n + n + i, 1, -c[i]);
    pd.add_edge(n + n + i, n + n + n + i, 1, 0);
    pd.add_edge(n + n + n + i, t, 1, 0);
  }
  ll ans = -pd.minimum_cost_flow(s, t, n);
  if (ans > 0) {
    cout << "YES\n" << (ans >= m ? "KADOMATSU!\n" : "NO\n");
  } else {
    cout << "NO\n";
  }
  return 0;
}
0