結果
| 問題 |
No.1341 真ん中を入れ替えて門松列
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2021-01-15 22:43:23 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 20,477 bytes |
| コンパイル時間 | 3,632 ms |
| コンパイル使用メモリ | 245,840 KB |
| 最終ジャッジ日時 | 2025-01-17 20:04:29 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 6 TLE * 8 |
ソースコード
#pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#else
#define dbg(x) (x)
#endif
// MaxFlow based and AtCoder Library, single class, no namespace, no private variables, compatible with C++11
// Reference: <https://atcoder.github.io/ac-library/production/document_ja/maxflow.html>
template <class Cap> struct mf_graph {
struct simple_queue_int {
std::vector<int> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const int &t) { payload.push_back(t); }
int &front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
mf_graph() : _n(0) {}
mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap});
g[to].push_back(_edge{from, from_id, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++) { result.push_back(get_edge(i)); }
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto &_e = g[pos[i].first][pos[i].second];
auto &_re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
std::vector<int> level, iter;
simple_queue_int que;
void _bfs(int s, int t) {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
}
Cap _dfs(int v, int s, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int &i = iter[v]; i < int(g[v].size()); i++) {
_edge &e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d = _dfs(e.to, s, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) return res;
}
level[v] = _n;
return res;
}
Cap flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); }
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
level.assign(_n, 0), iter.assign(_n, 0);
que.clear();
Cap flow = 0;
while (flow < flow_limit) {
_bfs(s, t);
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
Cap f = _dfs(t, s, flow_limit - flow);
if (!f) break;
flow += f;
}
return flow;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(_n);
simple_queue_int que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
int _n;
struct _edge {
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
// MinCostFlow based on AtCoder Library, no namespace, no private variables, compatible with C++11
// Reference: <https://atcoder.github.io/ac-library/production/document_ja/mincostflow.html>
// **NO NEGATIVE COST EDGES**
template <class Cap, class Cost> struct mcf_graph {
mcf_graph() {}
mcf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
assert(0 <= cost);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap, cost});
g[to].push_back(_edge{from, from_id, 0, -cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{
pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result(m);
for (int i = 0; i < m; i++) { result[i] = get_edge(i); }
return result;
}
std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); }
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); }
std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); }
std::vector<Cost> dual, dist;
std::vector<int> pv, pe;
std::vector<bool> vis;
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::vector<Q> que;
bool _dual_ref(int s, int t) {
std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max());
std::fill(vis.begin(), vis.end(), false);
que.clear();
dist[s] = 0;
que.push_back(Q{0, s});
std::push_heap(que.begin(), que.end());
while (!que.empty()) {
int v = que.front().to;
std::pop_heap(que.begin(), que.end());
que.pop_back();
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
for (int i = 0; i < int(g[v].size()); i++) {
auto e = g[v][i];
if (vis[e.to] || !e.cap) continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual[e.to] + dual[v];
if (dist[e.to] - dist[v] > cost) {
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push_back(Q{dist[e.to], e.to});
std::push_heap(que.begin(), que.end());
}
}
}
if (!vis[t]) { return false; }
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
// = - shortest(s, t) + dual[t] + shortest(s, v)
// = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
dual[v] -= dist[t] - dist[v];
}
return true;
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
dual.assign(_n, 0), dist.assign(_n, 0);
pv.assign(_n, 0), pe.assign(_n, 0);
vis.assign(_n, false);
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
std::vector<std::pair<Cap, Cost>> result;
result.push_back({flow, cost});
while (flow < flow_limit) {
if (!_dual_ref(s, t)) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); }
for (int v = t; v != s; v = pv[v]) {
auto &e = g[pv[v]][pe[v]];
e.cap -= c;
g[v][e.rev].cap += c;
}
Cost d = -dual[s];
flow += c;
cost += c * d;
if (prev_cost_per_flow == d) { result.pop_back(); }
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
return result;
}
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
int _n;
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
// https://github.com/beet-aizu/library/blob/master/bflow/capacityscaling.cpp
// O(m^2 \log m \log U)
// U: maximum capacity
enum Objective{
MINIMIZE = +1,
MAXIMIZE = -1,
};
template<typename Flow, typename Cost,
Objective objective = Objective::MINIMIZE>
struct MinCostFlow{
template<typename T> inline void chmin(T &x,T y){x=min(x,y);}
struct Edge{
int src,dst;
Flow flow,cap;
Cost cost;
int rev;
Edge(int src,int dst,Flow cap,Cost cost,int rev):
src(src),dst(dst),flow(0),cap(cap),cost(cost),rev(rev){}
Flow residual_cap()const{return cap-flow;}
};
struct EdgePtr{
int v,e;
EdgePtr(int v,int e):v(v),e(e){}
};
int n;
vector<vector<Edge>> G;
vector<Flow> b;
vector<Cost> p;
MinCostFlow(int n):n(n),G(n),b(n,0){}
EdgePtr add_edge(int src,int dst,Flow lower,Flow upper,Cost cost){
int e=G[src].size();
int r=(src==dst?e+1:G[dst].size());
assert(lower<=upper);
G[src].emplace_back(src,dst,+upper,+cost*objective,r);
G[dst].emplace_back(dst,src,-lower,-cost*objective,e);
return EdgePtr(src,e);
}
const Edge &get_edge(EdgePtr ep)const{return G[ep.v][ep.e];}
void push(Edge &e,Flow amount){
e.flow+=amount;
G[e.dst][e.rev].flow-=amount;
}
void add_supply(int v,Flow amount){b[v]+=amount;}
void add_demand(int v,Flow amount){b[v]-=amount;}
Cost residual_cost(const Edge &e){
return e.cost+p[e.src]-p[e.dst];
}
vector<int> excess_vs,deficit_vs;
void saturate_negative(const Flow delta){
for(auto &es:G){
for(auto &e:es){
Flow cap=e.residual_cap();
cap-=cap%delta;
if(cap<0 or residual_cost(e)<0){
push(e,cap);
b[e.src]-=cap;
b[e.dst]+=cap;
}
}
}
excess_vs.clear();
deficit_vs.clear();
for(int v=0;v<n;v++){
if(b[v]>0) excess_vs.emplace_back(v);
if(b[v]<0) deficit_vs.emplace_back(v);
}
}
const Cost unreachable = std::numeric_limits<Cost>::max();
Cost farthest;
vector<Cost> dist;
vector<Edge*> parent;
struct P{
Cost first;
int second;
P(Cost first,int second):first(first),second(second){}
bool operator<(const P o)const{return first>o.first;}
};
priority_queue<P> pq;
template<typename Predicate>
void eliminate(vector<int> &vs,Predicate predicate){
vs.erase(remove_if(begin(vs),end(vs),predicate),end(vs));
}
bool dual(const Flow delta){
eliminate(excess_vs, [&](int v){return b[v]<+delta;});
eliminate(deficit_vs,[&](int v){return b[v]>-delta;});
dist.assign(n,unreachable);
for(int v:excess_vs) pq.emplace(dist[v]=0,v);
parent.assign(n,nullptr);
auto emplace=[&](Edge& e){
if(e.residual_cap()<delta) return;
Cost nxt=dist[e.src]+residual_cost(e);
if(nxt>=dist[e.dst]) return;
pq.emplace(dist[e.dst]=nxt,e.dst);
parent[e.dst]=&e;
};
farthest=0;
int deficit_count=0;
while(!pq.empty()){
Cost d=pq.top().first;
int v=pq.top().second;
pq.pop();
if(dist[v]<d) continue;
farthest=d;
if(b[v]<=-delta) deficit_count++;
if(deficit_count>=(int)deficit_vs.size()) break;
for(auto &e:G[v]) emplace(e);
}
pq=decltype(pq)();
for(int v=0;v<n;v++)
p[v]+=min(dist[v],farthest);
return deficit_count>0;
}
void primal(const Flow delta){
for(int t:deficit_vs){
if(dist[t]>farthest) continue;
Flow f=-b[t];
int v;
for(v=t;parent[v];v=parent[v]->src)
chmin(f,parent[v]->residual_cap());
chmin(f,b[v]);
f-=f%delta;
if(f<=0) continue;
for(v=t;parent[v];){
auto &e=*parent[v];
push(e,f);
int u=parent[v]->src;
if(e.residual_cap()<=0) parent[v]=nullptr;
v=u;
}
b[t]+=f;
b[v]-=f;
}
}
template<Flow SCALING_FACTOR=2>
bool build(){
p.resize(n);
Flow max_flow=1;
for(auto t:b) max_flow=max({max_flow,t,-t});
for(auto &es:G)
for(auto &e:es)
max_flow=max({max_flow,e.residual_cap(),-e.residual_cap()});
Flow delta=1;
while(delta<max_flow) delta*=SCALING_FACTOR;
for(;delta;delta/=SCALING_FACTOR){
saturate_negative(delta);
while(dual(delta)) primal(delta);
}
return excess_vs.empty() and deficit_vs.empty();
}
template<typename T=Cost>
T get_cost(){
T res=0;
for(auto &es:G)
for(auto &e:es)
res+=T(e.flow)*T(e.cost)/T(objective);
return res/T(2);
}
template<typename T=Cost> T get_gain(){return get_cost();}
vector<Cost> get_potential(){
fill(p.begin(),p.end(),0);
for(int i=0;i<n;i++)
for(auto &es:G)
for(auto &e:es)
if(e.residual_cap()>0)
chmin(p[e.dst],p[e.src]+e.cost);
return p;
}
};
void bad()
{
puts("NO");
exit(0);
}
int main() {
int N;
lint M;
cin >> N >> M;
vector<lint> A(N), B(N), C(N);
REP(i, N) {
cin >> A[i] >> B[i] >> C[i];
if (A[i] == C[i]) bad();
if (A[i] > C[i]) swap(A[i], C[i]);
}
vector<pint> asort(N), csort(N);
REP(i, N) asort[i] = make_pair(A[i], i);
REP(i, N) csort[i] = make_pair(C[i], i);
sort(ALL(asort));
sort(ALL(csort));
const int gs = N * 4, gt = gs + 1;
const lint UP = 1LL << 30;
MinCostFlow<int, lint> g2(gt + 1);
REP(i, N) g2.add_edge(gs, i, 0, 1, 0);
REP(i, N) g2.add_edge(i + N, i + 3 * N, 0, 1, UP - C[i]);
REP(i, N) g2.add_edge(i + 2 * N, i + 3 * N, 0, 1, UP);
REP(i, N - 1) {
int j = asort[i].second, k = asort[i + 1].second;
g2.add_edge(N + j, N + k, 0, N - 1, 0);
}
REP(i, N - 1) {
int j = csort[i].second, k = csort[i + 1].second;
g2.add_edge(N * 2 + k, N * 2 + j, 0, N - 1, 0);
}
REP(i, N) g2.add_edge(i + 3 * N, gt, 0, 1, 0);
REP(i, N) {
int j = lower_bound(ALL(asort), pint(B[i] + 1, 0)) - asort.begin();
if (j < N) {
int to = asort[j].second;
g2.add_edge(i, to + N, 0, 1, UP);
}
j = lower_bound(ALL(csort), pint(B[i], 0)) - csort.begin() - 1;
if (j >= 0) {
int to = csort[j].second;
g2.add_edge(i, to + N * 2, 0, 1, UP - B[i]);
}
}
g2.add_supply(gs, N);
g2.add_demand(gt, N);
if (!g2.build()) bad();
else puts("YES");
// auto f2 = g2.(gs, gt, N);
lint k = N * UP * 2 - g2.get_cost();
// if (f2.first < N) bad();
if (k < M) bad();
puts("KADOMATSU!");
}
hitonanode