結果
問題 | No.1341 真ん中を入れ替えて門松列 |
ユーザー | ei1333333 |
提出日時 | 2021-01-15 22:58:24 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,779 bytes |
コンパイル時間 | 2,342 ms |
コンパイル使用メモリ | 219,988 KB |
実行使用メモリ | 13,756 KB |
最終ジャッジ日時 | 2024-05-05 00:57:22 |
合計ジャッジ時間 | 8,335 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
13,756 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 1 ms
6,944 KB |
testcase_05 | AC | 1 ms
6,944 KB |
testcase_06 | AC | 22 ms
6,940 KB |
testcase_07 | TLE | - |
testcase_08 | AC | 23 ms
6,940 KB |
testcase_09 | TLE | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
ソースコード
#include<bits/stdc++.h> using namespace std; using int64 = long long; const int mod = 1e9 + 7; //const int mod = 998244353; const int64 infll = (1LL << 62) - 1; const int inf = (1 << 30) - 1; struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for(int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for(T &in : v) is >> in; return is; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template< typename T = int64 > vector< T > make_v(size_t a) { return vector< T >(a); } template< typename T, typename... Ts > auto make_v(size_t a, Ts... ts) { return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...)); } template< typename T, typename V > typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) { t = v; } template< typename T, typename V > typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) { for(auto &e : t) fill_v(e, v); } template< typename F > struct FixPoint : F { FixPoint(F &&f) : F(forward< F >(f)) {} template< typename... Args > decltype(auto) operator()(Args &&... args) const { return F::operator()(*this, forward< Args >(args)...); } }; template< typename F > inline decltype(auto) MFP(F &&f) { return FixPoint< F >{forward< F >(f)}; } template< typename flow_t, typename cost_t > struct PrimalDual { const cost_t INF; struct edge { int to; flow_t cap; cost_t cost; int rev; bool isrev; }; vector< vector< edge > > graph; vector< cost_t > potential, min_cost; vector< int > prevv, preve; PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {} void add_edge(int from, int to, flow_t cap, cost_t cost) { graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false}); graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true}); } cost_t min_cost_flow(int s, int t, flow_t f) { int V = (int) graph.size(); cost_t ret = 0; using Pi = pair< cost_t, int >; priority_queue< Pi, vector< Pi >, greater< Pi > > que; potential.assign(V, 0); preve.assign(V, -1); prevv.assign(V, -1); while(f > 0) { min_cost.assign(V, INF); que.emplace(0, s); min_cost[s] = 0; while(!que.empty()) { Pi p = que.top(); que.pop(); if(min_cost[p.second] < p.first) continue; for(int i = 0; i < graph[p.second].size(); i++) { edge &e = graph[p.second][i]; cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to]; if(e.cap > 0 && min_cost[e.to] > nextCost) { min_cost[e.to] = nextCost; prevv[e.to] = p.second, preve[e.to] = i; que.emplace(min_cost[e.to], e.to); } } } if(min_cost[t] == INF) return -1; for(int v = 0; v < V; v++) potential[v] += min_cost[v]; flow_t addflow = f; for(int v = t; v != s; v = prevv[v]) { addflow = min(addflow, graph[prevv[v]][preve[v]].cap); } f -= addflow; ret += addflow * potential[t]; for(int v = t; v != s; v = prevv[v]) { edge &e = graph[prevv[v]][preve[v]]; e.cap -= addflow; graph[v][e.rev].cap += addflow; } } return ret; } void output() { for(int i = 0; i < graph.size(); i++) { for(auto &e : graph[i]) { if(e.isrev) continue; auto &rev_e = graph[e.to][e.rev]; cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl; } } } }; int main() { int N; int64 M; cin >> N >> M; vector< int > X(N), Y(N), Z(N); for(int i = 0; i < N; i++) { int A, B, C; cin >> A >> B >> C; if(A > C) swap(A, C); X[i] = A; Y[i] = B; Z[i] = C; } sort(begin(Y), end(Y)); PrimalDual< int64, int64 > flow(N + N + N + N + 2); int S = N + N + N + N; int T = S + 1; // <----- for(int i = N - 2; i >= 0; i--) { flow.add_edge(i + N + 1, i + N, flow.INF, 0); } // ----> for(int i = 1; i < N; i++) { flow.add_edge(i + N + N - 1, i + N + N, flow.INF, 0); } for(int i = 0; i < N; i++) { flow.add_edge(i + N, i + N + N + N, 1, 0); flow.add_edge(i + N + N, i + N + N + N, 1, inf - Y[i]); flow.add_edge(i + N + N + N, T, 1, 0); } for(int i = 0; i < N; i++) { vector< int > ok(N); for(int j = 0; j < N; j++) { if(Y[j] < X[i]) ok[j] = 1; else if(Z[i] < Y[j]) ok[j] = 2; } flow.add_edge(S, i, 1, 0); for(int j = 0; j < N; j++) { if(ok[j] == 2) { flow.add_edge(i, j + N + N, 1, 0); break; } } for(int j = N - 1; j >= 0; j--) { if(ok[j] == 1) { flow.add_edge(i, j + N, 1, inf - Z[i]); break; } } } auto ret = flow.min_cost_flow(S, T, N); if(ret == -1) { cout << "NO\n"; } else { cout << "YES\n"; ret -= 1LL * inf * N; ret *= -1; if(ret >= M) cout << "KADOMATSU!\n"; else cout << "NO\n"; } }