結果

問題 No.1341 真ん中を入れ替えて門松列
ユーザー hitonanode
提出日時 2021-01-15 23:06:25
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 552 ms / 2,000 ms
コード長 10,921 bytes
コンパイル時間 3,207 ms
コンパイル使用メモリ 210,660 KB
最終ジャッジ日時 2025-01-17 20:24:56
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each
    (begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l
    .second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l
    .second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end());
    return vec; }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']';
    return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return
    is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);},
    tpl); return os; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os;
    }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ',';
    os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os;
    }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';
    return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')';
    return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v
    .second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp)
    os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9
    ;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET <<
    endl
#else
#define dbg(x) (x)
#endif
// MinCostFlow based on AtCoder Library, no namespace, no private variables, compatible with C++11
// Reference: <https://atcoder.github.io/ac-library/production/document_ja/mincostflow.html>
// **NO NEGATIVE COST EDGES**
template <class Cap, class Cost> struct mcf_graph {
mcf_graph() {}
mcf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
assert(0 <= cost);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap, cost});
g[to].push_back(_edge{from, from_id, 0, -cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{
pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result(m);
for (int i = 0; i < m; i++) { result[i] = get_edge(i); }
return result;
}
std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); }
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); }
std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); }
std::vector<Cost> dual, dist;
std::vector<int> pv, pe;
std::vector<bool> vis;
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::vector<Q> que;
bool _dual_ref(int s, int t) {
std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max());
std::fill(vis.begin(), vis.end(), false);
que.clear();
dist[s] = 0;
que.push_back(Q{0, s});
std::push_heap(que.begin(), que.end());
while (!que.empty()) {
int v = que.front().to;
std::pop_heap(que.begin(), que.end());
que.pop_back();
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
for (int i = 0; i < int(g[v].size()); i++) {
auto e = g[v][i];
if (vis[e.to] || !e.cap) continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual[e.to] + dual[v];
if (dist[e.to] - dist[v] > cost) {
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push_back(Q{dist[e.to], e.to});
std::push_heap(que.begin(), que.end());
}
}
}
if (!vis[t]) { return false; }
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
// = - shortest(s, t) + dual[t] + shortest(s, v)
// = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
dual[v] -= dist[t] - dist[v];
}
return true;
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
dual.assign(_n, 0), dist.assign(_n, 0);
pv.assign(_n, 0), pe.assign(_n, 0);
vis.assign(_n, false);
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
std::vector<std::pair<Cap, Cost>> result;
result.push_back({flow, cost});
while (flow < flow_limit) {
if (!_dual_ref(s, t)) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); }
for (int v = t; v != s; v = pv[v]) {
auto &e = g[pv[v]][pe[v]];
e.cap -= c;
g[v][e.rev].cap += c;
}
Cost d = -dual[s];
flow += c;
cost += c * d;
if (prev_cost_per_flow == d) { result.pop_back(); }
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
return result;
}
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
int _n;
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
void bad()
{
puts("NO");
exit(0);
}
int main() {
int N;
lint M;
cin >> N >> M;
vector<lint> B(N);
vector<pint> AC;
REP(i, N) {
int a, c;
cin >> a >> B[i] >> c;
if (a > c) swap(a, c);
AC.emplace_back(a, c);
}
sort(ALL(B));
const auto z = sort_unique(B);
vector<int> sh(N);
REP(i, N) sh[i] = lower_bound(ALL(z), AC[i].first) - z.begin();
lint ret = -1;
vector<int> adds;
vector<int> cnt(z.size() + 1);
vector<int> used(N);
auto try_to_solve = [&]() {
lint tmp = 0;
for (auto i : adds) tmp += AC[i].second;
vector<int> bs, cs;
FOR(i, adds.size(), N) bs.emplace_back(B[i]);
REP(i, N) if (!used[i]) cs.emplace_back(AC[i].second);
sort(ALL(cs));
REP(i, bs.size()) if (bs[i] <= cs[i]) return;
tmp += accumulate(bs.begin(), bs.end(), 0LL);
chmax(ret, tmp);
};
REP(i, N) {
try_to_solve();
auto t = lower_bound(ALL(z), B[i]) - z.begin();
REP(j, t + 1) cnt[j]++;
int h = 0;
while (cnt[h] > 0) h++;
int amax = -1;
REP(i, N) if (!used[i] and sh[i] >= h) {
if (amax < 0 or AC[amax].second < AC[i].second) { amax = i; }
}
if (amax < 0) break;
used[amax] = 1;
REP(i, sh[amax]) cnt[i]--;
adds.emplace_back(amax);
}
try_to_solve();
if (ret < 0) bad();
puts("YES");
if (ret < M) bad();
puts("KADOMATSU!");
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0