結果

問題 No.1341 真ん中を入れ替えて門松列
ユーザー ei1333333ei1333333
提出日時 2021-01-15 23:08:56
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,989 ms / 2,000 ms
コード長 7,084 bytes
コンパイル時間 2,531 ms
コンパイル使用メモリ 225,584 KB
実行使用メモリ 5,888 KB
最終ジャッジ日時 2024-11-26 17:18:26
合計ジャッジ時間 17,892 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 9 ms
5,248 KB
testcase_07 AC 702 ms
5,632 KB
testcase_08 AC 27 ms
5,248 KB
testcase_09 AC 697 ms
5,632 KB
testcase_10 AC 1,058 ms
5,888 KB
testcase_11 AC 1,028 ms
5,760 KB
testcase_12 AC 907 ms
5,760 KB
testcase_13 AC 1,566 ms
5,760 KB
testcase_14 AC 1,987 ms
5,760 KB
testcase_15 AC 1,964 ms
5,760 KB
testcase_16 AC 1,989 ms
5,760 KB
testcase_17 AC 1,959 ms
5,760 KB
testcase_18 AC 567 ms
5,788 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>

using namespace std;

using int64 = long long;
const int mod = 1e9 + 7;
//const int mod = 998244353;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;


template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename F >
struct FixPoint : F {
  FixPoint(F &&f) : F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};

template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}


template< typename key_t, typename val_t >
struct RadixHeap {
  static constexpr int bit = sizeof(key_t) * 8;
  array< vector< pair< key_t, val_t > >, bit > vs;

  size_t sz;
  key_t last;

  RadixHeap() : sz(0), last(0) {}

  bool empty() const { return sz == 0; }

  size_t size() const { return sz; }

  inline int getbit(int a) const {
    return a ? bit - __builtin_clz(a) : 0;
  }

  inline int getbit(int64_t a) const {
    return a ? bit - __builtin_clzll(a) : 0;
  }

  void push(const key_t &key, const val_t &val) {
    sz++;
    vs[getbit(key ^ last)].emplace_back(key, val);
  }

  pair< key_t, val_t > pop() {
    if(vs[0].empty()) {
      int idx = 1;
      while(vs[idx].empty()) idx++;
      last = min_element(vs[idx].begin(), vs[idx].end())->first;
      for(auto &p:vs[idx]) vs[getbit(p.first ^ last)].emplace_back(p);
      vs[idx].clear();
    }
    --sz;
    auto res = vs[0].back();
    vs[0].pop_back();
    return res;
  }
};

template< typename CapType, typename CostType >
class MinCostFlowDAG {
public:
  using Cat = CapType;
  using Cot = CostType;
  using pti = pair< Cot, int >;
  struct edge {
    int to, rev;
    Cat cap;
    Cot cost;
  };
  const int V;
  const Cot inf;
  vector< vector< edge > > G;
  vector< Cot > h, dist;
  vector< int > deg, ord, prevv, preve;

  MinCostFlowDAG(const int node_size) : V(node_size), inf(numeric_limits< Cot >::max()),
                                        G(V), h(V, inf), dist(V), deg(V, 0), prevv(V), preve(V) {}

  void add_edge(const int from, const int to, const Cat cap, const Cot cost) {
    if(cap == 0) return;
    G[from].push_back((edge) {to, (int) G[to].size(), cap, cost});
    G[to].push_back((edge) {from, (int) G[from].size() - 1, 0, -cost});
    ++deg[to];
  }

  bool tsort() {
    queue< int > que;
    for(int i = 0; i < V; ++i) {
      if(deg[i] == 0) que.push(i);
    }
    while(!que.empty()) {
      const int p = que.front();
      que.pop();
      ord.push_back(p);
      for(auto &e : G[p]) {
        if(e.cap > 0 && --deg[e.to] == 0) que.push(e.to);
      }
    }
    return (*max_element(deg.begin(), deg.end()) == 0);
  }

  void calc_potential(const int s) {
    h[s] = 0;
    for(const int v : ord) {
      if(h[v] == inf) continue;
      for(const edge &e : G[v]) {
        if(e.cap > 0) h[e.to] = min(h[e.to], h[v] + e.cost);
      }
    }
  }

  void Dijkstra(const int s) {
    RadixHeap< int64_t, int > que;
    fill(dist.begin(), dist.end(), inf);
    dist[s] = 0;
    que.push(0, s);
    while(!que.empty()) {
      pti p = que.pop();
      const int v = p.second;
      if(dist[v] < p.first) continue;
      for(int i = 0; i < (int) G[v].size(); ++i) {
        edge &e = G[v][i];
        if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
          dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
          prevv[e.to] = v, preve[e.to] = i;
          que.push(dist[e.to], e.to);
        }
      }
    }
  }

  void update(const int s, const int t, Cat &f, Cot &res) {
    for(int i = 0; i < V; i++) {
      if(dist[i] != inf) h[i] += dist[i];
    }
    Cat d = f;
    for(int v = t; v != s; v = prevv[v]) {
      d = min(d, G[prevv[v]][preve[v]].cap);
    }
    f -= d;
    res += h[t] * d;
    for(int v = t; v != s; v = prevv[v]) {
      edge &e = G[prevv[v]][preve[v]];
      e.cap -= d;
      G[v][e.rev].cap += d;
    }
  }

  Cot solve(const int s, const int t, Cat f) {
    if(!tsort()) assert(false); // not DAG
    calc_potential(s);
    Cot res = 0;
    while(f > 0) {
      Dijkstra(s);
      if(dist[t] == inf) return -1;
      update(s, t, f, res);
    }
    return res;
  }
};

int main() {
  int N;
  int64 M;
  cin >> N >> M;
  vector< int > X(N), Y(N), Z(N);
  for(int i = 0; i < N; i++) {
    int A, B, C;
    cin >> A >> B >> C;
    if(A > C) swap(A, C);
    X[i] = A;
    Y[i] = B;
    Z[i] = C;
  }
  sort(begin(Y), end(Y));

  MinCostFlowDAG< int64, int64 > flow(N + N + N + N + 2);
  int S = N + N + N + N;
  int T = S + 1;

  // <-----
  for(int i = N - 2; i >= 0; i--) {
    flow.add_edge(i + N + 1, i + N, N, 0);
  }
  // ---->
  for(int i = 1; i < N; i++) {
    flow.add_edge(i + N + N - 1, i + N + N, N, 0);
  }
  for(int i = 0; i < N; i++) {
    flow.add_edge(i + N, i + N + N + N, 1, 0);
    flow.add_edge(i + N + N, i + N + N + N, 1, inf - Y[i]);
    flow.add_edge(i + N + N + N, T, 1, 0);
  }

  for(int i = 0; i < N; i++) {
    vector< int > ok(N);
    for(int j = 0; j < N; j++) {
      if(Y[j] < X[i]) ok[j] = 1;
      else if(Z[i] < Y[j]) ok[j] = 2;
    }
    flow.add_edge(S, i, 1, 0);
    for(int j = 0; j < N; j++) {
      if(ok[j] == 2) {
        flow.add_edge(i, j + N + N, 1, 0);
        break;
      }
    }
    for(int j = N - 1; j >= 0; j--) {
      if(ok[j] == 1) {
        flow.add_edge(i, j + N, 1, inf - Z[i]);
        break;
      }
    }
  }
  auto ret = flow.solve(S, T, N);
  if(ret == -1) {
    cout << "NO\n";
  } else {
    cout << "YES\n";
    ret -= 1LL * inf * N;
    ret *= -1;
    if(ret >= M) cout << "KADOMATSU!\n";
    else cout << "NO\n";
  }
}

0