結果

問題 No.1339 循環小数
ユーザー lorent_kyoprolorent_kyopro
提出日時 2021-01-15 23:11:20
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 7,615 bytes
コンパイル時間 2,152 ms
コンパイル使用メモリ 215,596 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-11-26 17:19:14
合計ジャッジ時間 4,648 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 AC 38 ms
6,816 KB
testcase_32 AC 37 ms
6,816 KB
testcase_33 WA -
testcase_34 WA -
testcase_35 AC 538 ms
6,816 KB
testcase_36 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <cassert>
#include <tuple>
#include <vector>

#include <utility>

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

long long pow_mod(long long x, long long n, int m) {
    assert(0 <= n && 1 <= m);
    if (m == 1) return 0;
    internal::barrett bt((unsigned int)(m));
    unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
    while (n) {
        if (n & 1) r = bt.mul(r, y);
        y = bt.mul(y, y);
        n >>= 1;
    }
    return r;
}

long long inv_mod(long long x, long long m) {
    assert(1 <= m);
    auto z = internal::inv_gcd(x, m);
    assert(z.first == 1);
    return z.second;
}

std::pair<long long, long long> crt(const std::vector<long long>& r,
                                    const std::vector<long long>& m) {
    assert(r.size() == m.size());
    int n = int(r.size());
    long long r0 = 0, m0 = 1;
    for (int i = 0; i < n; i++) {
        assert(1 <= m[i]);
        long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
        if (m0 < m1) {
            std::swap(r0, r1);
            std::swap(m0, m1);
        }
        if (m0 % m1 == 0) {
            if (r0 % m1 != r1) return {0, 0};
            continue;
        }


        long long g, im;
        std::tie(g, im) = internal::inv_gcd(m0, m1);

        long long u1 = (m1 / g);
        if ((r1 - r0) % g) return {0, 0};

        long long x = (r1 - r0) / g % u1 * im % u1;

        r0 += x * m0;
        m0 *= u1;  // -> lcm(m0, m1)
        if (r0 < 0) r0 += m0;
    }
    return {r0, m0};
}

long long floor_sum(long long n, long long m, long long a, long long b) {
    long long ans = 0;
    if (a >= m) {
        ans += (n - 1) * n * (a / m) / 2;
        a %= m;
    }
    if (b >= m) {
        ans += n * (b / m);
        b %= m;
    }

    long long y_max = (a * n + b) / m, x_max = (y_max * m - b);
    if (y_max == 0) return ans;
    ans += (n - (x_max + a - 1) / a) * y_max;
    ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
    return ans;
}

}  // namespace atcoder

using namespace atcoder;
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (int)n; ++i)
#define rrep(i, n) for (int i = (int)n-1; i >= 0; --i)
using namespace std;
using ll = long long;
template<typename T>
inline bool chmax(T& a, const T& b) {
    if (a < b){
        a = b;
        return true;
    }
    return false;
}
template<typename T>
inline bool chmin(T& a, const T& b) {
    if (b < a) {
        a = b;
        return true;
    }
    return false;
}
/**
 * @brief 多次元 vector の作成
 * @author えびちゃん
 */
namespace detail {
    template<typename T, int N>
    auto make_vec(vector<int>& sizes, T const& x) {
        if constexpr (N == 1) {
            return vector(sizes[0], x);
        } else {
            int size = sizes[N-1];
            sizes.pop_back();
            return vector(size, make_vec<T, N-1>(sizes, x));
        }
    }
}
template<typename T, int N>
auto make_vec(int const(&sizes)[N], T const& x = T()) {
    vector<int> s(N);
    for (int i = 0; i < N; ++i) s[i] = sizes[N-i-1];
    return detail::make_vec<T, N>(s, x);
}
__attribute__((constructor))
void fast_io() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
}

vector<pair<long long, int>> factor(long long x) {
    vector<pair<long long, int>> res;
    for (long long i = 2; i*i <= x; ++i) {
        if (x % i) continue;
        res.emplace_back(i, 0);
        while (x % i == 0) {
            x /= i;
            res.back().second++;
        }
    }
    if (x != 1) res.emplace_back(x, 1);
    return res;
}

long long modlog(long long a, long long b, long long p) {
    // a^k = b (mod p)
    unordered_map<long long, long long> mp;
    long long sq = sqrt(p) + 1;
    long long baby = 1;
    for (int i = 0; i < sq; ++i) {
        baby = baby * a % p;
        if (baby == b) return i + 1;
        mp[baby] = i + 1;
    }
    long long giant = inv_mod(pow_mod(a, sq, p), p);
    for (int i = 1; i <= sq; ++i) {
        b = b * giant % p;
        if (mp.count(b)) return i * sq + mp[b];
    }
    return -1;
}

void solve() {
    int n;
    cin >> n;
    while (n % 2 == 0) n /= 2;
    while (n % 5 == 0) n /= 5;
    if (n == 1) {
        cout << 1 << '\n';
        return;
    }
    long long ans = 1;
    auto f = factor(n);
    for (auto [p, k] : f) {
        long long l = modlog(10, 1, p);
        ans = lcm(ans, l);
    }
    cout << ans << '\n';
}

int main() {
    int t;
    cin >> t;
    while (t--) solve();
}
0