結果
問題 | No.1341 真ん中を入れ替えて門松列 |
ユーザー | Gosu_Hiroo |
提出日時 | 2021-01-15 23:14:39 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 15,375 bytes |
コンパイル時間 | 2,669 ms |
コンパイル使用メモリ | 225,760 KB |
実行使用メモリ | 607,252 KB |
最終ジャッジ日時 | 2024-11-26 17:23:43 |
合計ジャッジ時間 | 36,733 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,636 KB |
testcase_01 | MLE | - |
testcase_02 | AC | 2 ms
13,640 KB |
testcase_03 | MLE | - |
testcase_04 | AC | 2 ms
13,640 KB |
testcase_05 | AC | 2 ms
446,988 KB |
testcase_06 | AC | 29 ms
13,636 KB |
testcase_07 | TLE | - |
testcase_08 | AC | 12 ms
13,636 KB |
testcase_09 | TLE | - |
testcase_10 | TLE | - |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | MLE | - |
ソースコード
/** * code generated by JHelper * More info: https://github.com/AlexeyDmitriev/JHelper * @author */ #include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; template<typename T, typename U = T> using P = pair<T, U>; template<typename T> using V = vector<T>; using VI = vector<int>; using VL = vector<long long>; //#pragma GCC optimize("O3") //#pragma GCC target("avx2") //#pragma GCC target("avx512f") //#pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") //#pragma GCC optimize("Ofast") #define G(size_1) vector<vector<int>>(size_1, vector<int>()) #define SZ(x) ((long long)(x).size()) #define READ ({long long t;cin >> t;t;}) #define FOR(i, __begin, __end) for (auto i = (__begin) - ((__begin) > (__end)); i != (__end) - ((__begin) > (__end)); i += 1 - 2 * ((__begin) > (__end))) #define REP(i, __end) for (auto i = decltype(__end){0}; i < (__end); ++i) #define ALL(x) (x).begin(),(x).end() #define RALL(x) (x).rbegin(),(x).rend() #define F first #define S second #define y0 y3487465 #define y1 y8687969 #define j0 j1347829 #define j1 j234892 #define BIT(n) (1LL<<(n)) #define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() ) #define EB emplace_back #define PB push_back #define fcout cout << fixed << setprecision(12) #define fcerr cerr << fixed << setprecision(12) #define print(x) cout << (x) << '\n' #define printE(x) cout << (x) << endl; #define fprint(x) cout << fixed << setprecision(12) << (x) << '\n' # define BYE(a) do { cout << (a) << endl; return ; } while (false) #define LB lower_bound #define UB upper_bound #define LBI(c, x) distance((c).begin(), lower_bound((c).begin(), (c).end(), (x))) #define UBI(c, x) distance((c).begin(), upper_bound((c).begin(), (c).end(), (x))) #ifdef DEBUG #define DBG(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); _err(cerr,_it, args); } #define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); _err(std::cerr,_it, args); } #else #define DBG(args...) {}; #define ERR(args...) {}; #endif void _err(std::ostream& cerr, istream_iterator<string> it){cerr << endl;} template<typename T, typename... Args> void _err(std::ostream& cerr, istream_iterator<string> it, T a, Args... args){ cerr << *it << " = " << a << " "; _err(cerr, ++it, args...); } namespace aux{ template<std::size_t...> struct seq{ }; template<std::size_t N, std::size_t... Is> struct gen_seq : gen_seq<N - 1, N - 1, Is...>{ }; template<std::size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{ }; template<class Ch, class Tr, class Tuple, std::size_t... Is> void print_tuple(std::basic_ostream<Ch, Tr>& os, Tuple const& t, seq<Is...>){ using swallow = int[]; (void) swallow{0, (void(os << (Is == 0 ? "" : ",") << std::get<Is>(t)), 0)...}; } template<class Ch, class Tr, class Tuple, std::size_t... Is> void read_tuple(std::basic_istream<Ch, Tr>& os, Tuple& t, seq<Is...>){ using swallow = int[]; (void) swallow{0, (void(os >> std::get<Is>(t)), 0)...}; } } // aux:: template<class Ch, class Tr, class... Args> auto operator<<(std::basic_ostream<Ch, Tr>& os, std::tuple<Args...> const& t) -> std::basic_ostream<Ch, Tr>&{ os << "("; aux::print_tuple(os, t, aux::gen_seq<sizeof...(Args)>()); return os << ")"; } template<class Ch, class Tr, class... Args> auto operator>>(std::basic_istream<Ch, Tr>& os, std::tuple<Args...>& t) -> std::basic_istream<Ch, Tr>&{ aux::read_tuple(os, t, aux::gen_seq<sizeof...(Args)>()); return os; } template<class T> inline bool chmax(T& a, const T& b){ if(a < b){ a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, const T& b){ if(b < a){ a = b; return 1; } return 0; } template<typename T, typename U> istream& operator>>(istream& is, pair<T, U>& V){ is >> V.F >> V.S; return is; } template<typename T> istream& operator>>(istream& is, vector<T>& V){ for(auto&& ele : V)is >> ele; return is; } template<typename T> ostream& operator<<(ostream& os, const vector<T> V){ os << "["; int cnt = 0; T curr; if(!V.empty()){ for(int i = 0; i < V.size() - 1; ++i){ if(V[i] == curr)cnt++; else cnt = 0; if(cnt == 4)os << "... "; if(cnt < 4) os << i << ":" << V[i] << " "; curr = V[i]; } os << V.size() - 1 << ":" << V.back(); } os << "]\n"; return os; } template<typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U> P){ os << "("; os << P.first << "," << P.second; os << ")"; return os; } template<typename T, typename U> ostream& operator<<(ostream& os, const set<T, U> V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << *it << " "; it++; } os << *it; } os << "}\n"; return os; } template<typename K, typename H, typename P> ostream& operator<<(ostream& os, const unordered_set<K, H, P> V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << *it << " "; it++; } os << *it; } os << "}\n"; return os; } template<typename K, typename C> ostream& operator<<(ostream& os, const multiset<K, C> V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << *it << " "; it++; } os << *it; } os << "}"; return os; } template<typename K, typename T, typename C> ostream& operator<<(ostream& os, const map<K, T, C> V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << "("; os << it->first << "," << it->second; os << ") "; it++; } os << "("; os << it->first << "," << it->second; os << ")"; } os << "}\n"; return os; } template<typename K, typename T, typename C> ostream& operator<<(ostream& os, const unordered_map<K, T, C> V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << "("; os << it->first << "," << it->second; os << ") "; it++; } os << "("; os << it->first << "," << it->second; os << ")"; } os << "}\n"; return os; } template<typename T> ostream& operator<<(ostream& os, const deque<T> V){ os << "["; if(!V.empty()){ for(int i = 0; i < V.size() - 1; ++i){ os << V[i] << "->"; } if(!V.empty())os << V.back(); } os << "]\n"; return os; }; template<typename T, typename Cont, typename Comp> ostream& operator<<(ostream& os, const priority_queue<T, Cont, Comp> V){ priority_queue<T, Cont, Comp> _V = V; os << "["; if(!_V.empty()){ while(_V.size() > 1){ os << _V.top() << "->"; _V.pop(); } os << _V.top(); } os << "]\n"; return os; }; template<class F> struct y_combinator{ F f; // the lambda will be stored here // a forwarding operator(): template<class... Args> decltype(auto) operator()(Args&& ... args) const{ // we pass ourselves to f, then the arguments. // the lambda should take the first argument as `auto&& recurse` or similar. return f(*this, std::forward<Args>(args)...); } }; // helper function that deduces the type of the lambda: template<class F> y_combinator<std::decay_t<F>> recursive(F&& f){ return {std::forward<F>(f)}; } struct hash_pair{ template<class T1, class T2> size_t operator()(const pair<T1, T2>& p) const{ auto hash1 = hash<T1>{}(p.first); auto hash2 = hash<T2>{}(p.second); return hash1^hash2; } }; template<typename U> auto vec(int n, U v){ return std::vector(n, v); } template<typename... Args> auto vec(int n, Args... args){ auto val = vec(std::forward<Args>(args)...); return std::vector<decltype(val)>(n, std::move(val)); } const double PI = 2*acos(.0); const int INF = 0x3f3f3f3f; template<class T> inline T ceil(T a, T b){return (a + b - 1)/b;} inline long long popcount(ll x){return __builtin_popcountll(x);} #ifndef ATCODER_MINCOSTFLOW_HPP #define ATCODER_MINCOSTFLOW_HPP 1 #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); // assert(0 <= cap); // assert(0 <= cost); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); int from_id = int(g[from].size()); int to_id = int(g[to].size()); if (from == to) to_id++; g[from].push_back(_edge{to, to_id, cap, cost}); g[to].push_back(_edge{from, from_id, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()/2); // return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()/2); // return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector<Cost> dual(_n, 0), dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()/2); // std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue<Q> que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; } // namespace atcoder #endif // ATCODER_MINCOSTFLOW_HPP using namespace atcoder; void solve(std::istream& cin, std::ostream& cout, std::ostream& cerr){ ll N, M; cin >> N >> M; VL a(N), b(N), c(N); REP(i, N)cin >> a[i] >> b[i] >> c[i]; REP(i,N)if(a[i]>c[i])swap(a[i],c[i]); mcf_graph<int, ll> mcf_g(N*3 + 2); int s = 3*N, t = 3*N + 1; ll s_c = accumulate(ALL(c), 0ll); DBG(s_c) REP(i, N)mcf_g.add_edge(s, i, 1, 0); REP(i, N)mcf_g.add_edge(i + N, t, 1, 0), mcf_g.add_edge(i + 2*N, t, 1, 0); REP(i, N){ REP(j,N){ if(b[i] < a[j])mcf_g.add_edge(i, j + N, 1, INF); if(b[i] > c[j])mcf_g.add_edge(i, j + 2*N, 1, c[j] - b[i] + INF); } } auto flow = mcf_g.flow(s, t, N); DBG(flow) if(flow.F == N){ print("YES"); DBG(s_c+N*INF-flow.S) if(s_c + N*INF - flow.S >= M)print("KADOMATSU!"); else print("NO"); }else print("NO"); } #undef int int main() { istream& in(cin); ostream& out(cout); ostringstream err; in.tie(0); ios::sync_with_stdio(0); solve(in, out, err); return 0; }