結果

問題 No.1341 真ん中を入れ替えて門松列
ユーザー ei1333333ei1333333
提出日時 2021-01-15 23:16:18
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,877 ms / 2,000 ms
コード長 6,723 bytes
コンパイル時間 4,519 ms
コンパイル使用メモリ 240,264 KB
実行使用メモリ 5,760 KB
最終ジャッジ日時 2024-05-05 01:10:00
合計ジャッジ時間 17,944 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 8 ms
5,376 KB
testcase_07 AC 653 ms
5,376 KB
testcase_08 AC 19 ms
5,376 KB
testcase_09 AC 683 ms
5,632 KB
testcase_10 AC 995 ms
5,760 KB
testcase_11 AC 972 ms
5,632 KB
testcase_12 AC 894 ms
5,760 KB
testcase_13 AC 1,486 ms
5,760 KB
testcase_14 AC 1,877 ms
5,760 KB
testcase_15 AC 1,858 ms
5,716 KB
testcase_16 AC 1,841 ms
5,632 KB
testcase_17 AC 1,875 ms
5,760 KB
testcase_18 AC 568 ms
5,760 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC target ("avx")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")

#include<bits/stdc++.h>

using namespace std;

using int64 = long long;
const int mod = 1e9 + 7;
//const int mod = 998244353;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;


template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename F >
struct FixPoint : F {
  FixPoint(F &&f) : F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};

template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}


template< typename key_t, typename val_t >
struct RadixHeap {
  static constexpr int bit = sizeof(key_t) * 8;
  array< vector< pair< key_t, val_t > >, bit > vs;

  size_t sz;
  key_t last;

  RadixHeap() : sz(0), last(0) {}

  bool empty() const { return sz == 0; }

  size_t size() const { return sz; }

  inline int getbit(int a) const {
    return a ? bit - __builtin_clz(a) : 0;
  }

  inline int getbit(int64_t a) const {
    return a ? bit - __builtin_clzll(a) : 0;
  }

  void push(const key_t &key, const val_t &val) {
    sz++;
    vs[getbit(key ^ last)].emplace_back(key, val);
  }

  pair< key_t, val_t > pop() {
    if(vs[0].empty()) {
      int idx = 1;
      while(vs[idx].empty()) idx++;
      last = min_element(vs[idx].begin(), vs[idx].end())->first;
      for(auto &p:vs[idx]) vs[getbit(p.first ^ last)].emplace_back(p);
      vs[idx].clear();
    }
    --sz;
    auto res = vs[0].back();
    vs[0].pop_back();
    return res;
  }
};

template< typename flow_t, typename cost_t >
struct PrimalDual {
  const cost_t INF;

  struct edge {
    int to;
    flow_t cap;
    cost_t cost;
    int rev;
    bool isrev;
  };
  vector< vector< edge > > graph;
  vector< cost_t > potential, min_cost;
  vector< int > prevv, preve;

  PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {}

  void add_edge(int from, int to, flow_t cap, cost_t cost) {
    graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false});
    graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true});
  }

  cost_t min_cost_flow(int s, int t, flow_t f) {
    int V = (int) graph.size();
    cost_t ret = 0;
    RadixHeap< int64_t, int > que;
    potential.assign(V, 0);
    preve.assign(V, -1);
    prevv.assign(V, -1);

    while(f > 0) {
      min_cost.assign(V, INF);
      que.push(0, s);
      min_cost[s] = 0;
      while(!que.empty()) {
        auto p = que.pop();
        if(min_cost[p.second] < p.first) continue;
        for(int i = 0; i < graph[p.second].size(); i++) {
          edge &e = graph[p.second][i];
          cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
          if(e.cap > 0 && min_cost[e.to] > nextCost) {
            min_cost[e.to] = nextCost;
            prevv[e.to] = p.second, preve[e.to] = i;
            que.push(min_cost[e.to], e.to);
          }
        }
      }
      if(min_cost[t] == INF) return -1;
      for(int v = 0; v < V; v++) potential[v] += min_cost[v];
      flow_t addflow = f;
      for(int v = t; v != s; v = prevv[v]) {
        addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
      }
      f -= addflow;
      ret += addflow * potential[t];
      for(int v = t; v != s; v = prevv[v]) {
        edge &e = graph[prevv[v]][preve[v]];
        e.cap -= addflow;
        graph[v][e.rev].cap += addflow;
      }
    }
    return ret;
  }

  void output() {
    for(int i = 0; i < graph.size(); i++) {
      for(auto &e : graph[i]) {
        if(e.isrev) continue;
        auto &rev_e = graph[e.to][e.rev];
        cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
      }
    }
  }
};


int main() {
  int N;
  int64 M;
  cin >> N >> M;
  vector< int > X(N), Y(N), Z(N);
  for(int i = 0; i < N; i++) {
    int A, B, C;
    cin >> A >> B >> C;
    if(A > C) swap(A, C);
    X[i] = A;
    Y[i] = B;
    Z[i] = C;
  }
  sort(begin(Y), end(Y));

  PrimalDual< int, int64 > flow(N + N + N + N + 2);
  int S = N + N + N + N;
  int T = S + 1;

  // <-----
  for(int i = N - 2; i >= 0; i--) {
    flow.add_edge(i + N + 1, i + N, N, 0);
  }
  // ---->
  for(int i = 1; i < N; i++) {
    flow.add_edge(i + N + N - 1, i + N + N, N, 0);
  }
  for(int i = 0; i < N; i++) {
    flow.add_edge(i + N, i + N + N + N, 1, 0);
    flow.add_edge(i + N + N, i + N + N + N, 1, inf - Y[i]);
    flow.add_edge(i + N + N + N, T, 1, 0);
  }

  for(int i = 0; i < N; i++) {
    vector< int > ok(N);
    for(int j = 0; j < N; j++) {
      if(Y[j] < X[i]) ok[j] = 1;
      else if(Z[i] < Y[j]) ok[j] = 2;
    }
    flow.add_edge(S, i, 1, 0);
    for(int j = 0; j < N; j++) {
      if(ok[j] == 2) {
        flow.add_edge(i, j + N + N, 1, 0);
        break;
      }
    }
    for(int j = N - 1; j >= 0; j--) {
      if(ok[j] == 1) {
        flow.add_edge(i, j + N, 1, inf - Z[i]);
        break;
      }
    }
  }
  auto ret = flow.min_cost_flow(S, T, N);
  if(ret == -1) {
    cout << "NO\n";
  } else {
    cout << "YES\n";
    ret -= 1LL * inf * N;
    ret *= -1;
    if(ret >= M) cout << "KADOMATSU!\n";
    else cout << "NO\n";
  }
}
0