結果
問題 | No.1341 真ん中を入れ替えて門松列 |
ユーザー | rniya |
提出日時 | 2021-01-15 23:32:37 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 871 ms / 2,000 ms |
コード長 | 13,475 bytes |
コンパイル時間 | 3,230 ms |
コンパイル使用メモリ | 232,836 KB |
実行使用メモリ | 6,492 KB |
最終ジャッジ日時 | 2024-11-26 18:35:05 |
合計ジャッジ時間 | 10,216 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 5 ms
5,248 KB |
testcase_07 | AC | 530 ms
5,980 KB |
testcase_08 | AC | 7 ms
5,504 KB |
testcase_09 | AC | 336 ms
6,236 KB |
testcase_10 | AC | 420 ms
6,492 KB |
testcase_11 | AC | 425 ms
6,236 KB |
testcase_12 | AC | 387 ms
6,368 KB |
testcase_13 | AC | 650 ms
6,360 KB |
testcase_14 | AC | 860 ms
6,240 KB |
testcase_15 | AC | 871 ms
6,240 KB |
testcase_16 | AC | 865 ms
6,364 KB |
testcase_17 | AC | 867 ms
6,368 KB |
testcase_18 | AC | 460 ms
5,852 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; const long long MOD=1000000007; // const long long MOD=998244353; #define LOCAL #pragma region Macros typedef long long ll; typedef __int128_t i128; typedef unsigned int uint; typedef unsigned long long ull; #define ALL(x) (x).begin(),(x).end() const int INF=1e9; const long long IINF=1e18; const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1}; const char dir[4]={'D','R','U','L'}; template<typename T> istream &operator>>(istream &is,vector<T> &v){ for (T &x:v) is >> x; return is; } template<typename T> ostream &operator<<(ostream &os,const vector<T> &v){ for (int i=0;i<v.size();++i){ os << v[i] << (i+1==v.size()?"": " "); } return os; } template<typename T,typename U> ostream &operator<<(ostream &os,const pair<T,U> &p){ os << '(' << p.first << ',' << p.second << ')'; return os; } template<typename T,typename U,typename V> ostream&operator<<(ostream &os,const tuple<T,U,V> &t){ os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ')'; return os; } template<typename T,typename U,typename V,typename W> ostream&operator<<(ostream &os,const tuple<T,U,V,W> &t){ os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ',' << get<3>(t) << ')'; return os; } template<typename T,typename U> ostream &operator<<(ostream &os,const map<T,U> &m){ os << '{'; for (auto itr=m.begin();itr!=m.end();){ os << '(' << itr->first << ',' << itr->second << ')'; if (++itr!=m.end()) os << ','; } os << '}'; return os; } template<typename T,typename U> ostream &operator<<(ostream &os,const unordered_map<T,U> &m){ os << '{'; for (auto itr=m.begin();itr!=m.end();){ os << '(' << itr->first << ',' << itr->second << ')'; if (++itr!=m.end()) os << ','; } os << '}'; return os; } template<typename T> ostream &operator<<(ostream &os,const set<T> &s){ os << '{'; for (auto itr=s.begin();itr!=s.end();){ os << *itr; if (++itr!=s.end()) os << ','; } os << '}'; return os; } template<typename T> ostream &operator<<(ostream &os,const multiset<T> &s){ os << '{'; for (auto itr=s.begin();itr!=s.end();){ os << *itr; if (++itr!=s.end()) os << ','; } os << '}'; return os; } template<typename T> ostream &operator<<(ostream &os,const unordered_set<T> &s){ os << '{'; for (auto itr=s.begin();itr!=s.end();){ os << *itr; if (++itr!=s.end()) os << ','; } os << '}'; return os; } template<typename T> ostream &operator<<(ostream &os,const deque<T> &v){ for (int i=0;i<v.size();++i){ os << v[i] << (i+1==v.size()?"": " "); } return os; } void debug_out(){cerr << '\n';} template<class Head,class... Tail> void debug_out(Head&& head,Tail&&... tail){ cerr << head; if (sizeof...(Tail)>0) cerr << ", "; debug_out(move(tail)...); } #ifdef LOCAL #define debug(...) cerr << " ";\ cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n';\ cerr << " ";\ debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif template<typename T> T gcd(T x,T y){return y!=0?gcd(y,x%y):x;} template<typename T> T lcm(T x,T y){return x/gcd(x,y)*y;} template<class T1,class T2> inline bool chmin(T1 &a,T2 b){ if (a>b){a=b; return true;} return false; } template<class T1,class T2> inline bool chmax(T1 &a,T2 b){ if (a<b){a=b; return true;} return false; } #pragma endregion #ifndef ATCODER_INTERNAL_CSR_HPP #define ATCODER_INTERNAL_CSR_HPP 1 #include <algorithm> #include <utility> #include <vector> namespace atcoder { namespace internal { template <class E> struct csr { std::vector<int> start; std::vector<E> elist; csr(int n, const std::vector<std::pair<int, E>>& edges) : start(n + 1), elist(edges.size()) { for (auto e : edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e : edges) { elist[counter[e.first]++] = e.second; } } }; } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_CSR_HPP #ifndef ATCODER_INTERNAL_QUEUE_HPP #define ATCODER_INTERNAL_QUEUE_HPP 1 #include <vector> namespace atcoder { namespace internal { template <class T> struct simple_queue { std::vector<T> payload; int pos = 0; void reserve(int n) { payload.reserve(n); } int size() const { return int(payload.size()) - pos; } bool empty() const { return pos == int(payload.size()); } void push(const T& t) { payload.push_back(t); } T& front() { return payload[pos]; } void clear() { payload.clear(); pos = 0; } void pop() { pos++; } }; } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_QUEUE_HPP #ifndef ATCODER_MINCOSTFLOW_HPP #define ATCODER_MINCOSTFLOW_HPP 1 #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); assert(0 <= cost); int m = int(_edges.size()); _edges.push_back({from, to, cap, 0, cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(_edges.size()); assert(0 <= i && i < m); return _edges[i]; } std::vector<edge> edges() { return _edges; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); int m = int(_edges.size()); std::vector<int> edge_idx(m); auto g = [&]() { std::vector<int> degree(_n), redge_idx(m); std::vector<std::pair<int, _edge>> elist; elist.reserve(2 * m); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] = degree[e.from]++; redge_idx[i] = degree[e.to]++; elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}}); elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}}); } auto _g = internal::csr<_edge>(_n, elist); for (int i = 0; i < m; i++) { auto e = _edges[i]; edge_idx[i] += _g.start[e.from]; redge_idx[i] += _g.start[e.to]; _g.elist[edge_idx[i]].rev = redge_idx[i]; _g.elist[redge_idx[i]].rev = edge_idx[i]; } return _g; }(); auto result = slope(g, s, t, flow_limit); for (int i = 0; i < m; i++) { auto e = g.elist[edge_idx[i]]; _edges[i].flow = _edges[i].cap - e.cap; } return result; } private: int _n; std::vector<edge> _edges; // inside edge struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g, int s, int t, Cap flow_limit) { // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge // dual_dist[i] = (dual[i], dist[i]) std::vector<std::pair<Cost, Cost>> dual_dist(_n); std::vector<int> prev_e(_n); std::vector<bool> vis(_n); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::vector<int> que_min; std::vector<Q> que; auto dual_ref = [&]() { for (int i = 0; i < _n; i++) { dual_dist[i].second = std::numeric_limits<Cost>::max(); } std::fill(vis.begin(), vis.end(), false); que_min.clear(); que.clear(); // que[0..heap_r) was heapified size_t heap_r = 0; dual_dist[s].second = 0; que_min.push_back(s); while (!que_min.empty() || !que.empty()) { int v; if (!que_min.empty()) { v = que_min.back(); que_min.pop_back(); } else { while (heap_r < que.size()) { heap_r++; std::push_heap(que.begin(), que.begin() + heap_r); } v = que.front().to; std::pop_heap(que.begin(), que.end()); que.pop_back(); heap_r--; } if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second; for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto e = g.elist[i]; if (!e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual_dist[e.to].first + dual_v; if (dual_dist[e.to].second - dist_v > cost) { Cost dist_to = dist_v + cost; dual_dist[e.to].second = dist_to; prev_e[e.to] = e.rev; if (dist_to == dist_v) { que_min.push_back(e.to); } else { que.push_back(Q{dist_to, e.to}); } } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + // (shortest(s, v) + dual[s] - dual[v]) = - shortest(s, // t) + dual[t] + shortest(s, v) = shortest(s, v) - // shortest(s, t) >= 0 - (n-1)C dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}}; while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = g.elist[prev_e[v]].to) { c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap); } for (int v = t; v != s; v = g.elist[prev_e[v]].to) { auto& e = g.elist[prev_e[v]]; e.cap += c; g.elist[e.rev].cap -= c; } Cost d = -dual_dist[s].first; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } }; } // namespace atcoder #endif // ATCODER_MINCOSTFLOW_HPP int main(){ cin.tie(0); ios::sync_with_stdio(false); int N; ll M; cin >> N >> M; vector<int> A(N),B(N),C(N); vector<pair<int,int>> Max,Min; for (int i=0;i<N;++i){ cin >> A[i] >> B[i] >> C[i]; if (A[i]<C[i]) swap(A[i],C[i]); Max.emplace_back(A[i],i); Min.emplace_back(C[i],i); } sort(ALL(Max)); sort(ALL(Min)); atcoder::mcf_graph<int,ll> PD(3*N+2); int s=3*N,t=s+1,lb,ub,mid; for (int i=0;i<N;++i){ PD.add_edge(s,i,1,0); PD.add_edge(N+i,t,1,0); PD.add_edge(2*N+i,t,1,INF-A[Min[i].second]); lb=-1,ub=N; while (ub-lb>1){ mid=(ub+lb)>>1; (Max[mid].first<B[i]?lb:ub)=mid; } if (lb>=0) PD.add_edge(i,N+lb,1,INF-B[i]); lb=-1,ub=N; while (ub-lb>1){ mid=(ub+lb)>>1; (Min[mid].first>B[i]?ub:lb)=mid; } if (ub<N) PD.add_edge(i,2*N+ub,1,0); } for (int i=0;i<N-1;++i){ PD.add_edge(N+i+1,N+i,N,0); PD.add_edge(2*N+i,2*N+i+1,N,0); } auto res=PD.flow(s,t,N); if (res.first<N){ cout << "NO" << '\n'; return 0; } cout << "YES" << '\n'; ll ans=ll(INF)*N-res.second; cout << (ans>=M?"KADOMATSU!":"NO") << '\n'; }