結果

問題 No.1341 真ん中を入れ替えて門松列
ユーザー rniyarniya
提出日時 2021-01-15 23:32:37
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 871 ms / 2,000 ms
コード長 13,475 bytes
コンパイル時間 3,230 ms
コンパイル使用メモリ 232,836 KB
実行使用メモリ 6,492 KB
最終ジャッジ日時 2024-11-26 18:35:05
合計ジャッジ時間 10,216 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 5 ms
5,248 KB
testcase_07 AC 530 ms
5,980 KB
testcase_08 AC 7 ms
5,504 KB
testcase_09 AC 336 ms
6,236 KB
testcase_10 AC 420 ms
6,492 KB
testcase_11 AC 425 ms
6,236 KB
testcase_12 AC 387 ms
6,368 KB
testcase_13 AC 650 ms
6,360 KB
testcase_14 AC 860 ms
6,240 KB
testcase_15 AC 871 ms
6,240 KB
testcase_16 AC 865 ms
6,364 KB
testcase_17 AC 867 ms
6,368 KB
testcase_18 AC 460 ms
5,852 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
const long long MOD=1000000007;
// const long long MOD=998244353;
#define LOCAL
#pragma region Macros
typedef long long ll;
typedef __int128_t i128;
typedef unsigned int uint;
typedef unsigned long long ull;
#define ALL(x) (x).begin(),(x).end()
const int INF=1e9;
const long long IINF=1e18;
const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1};
const char dir[4]={'D','R','U','L'};

template<typename T>
istream &operator>>(istream &is,vector<T> &v){
    for (T &x:v) is >> x;
    return is;
}
template<typename T>
ostream &operator<<(ostream &os,const vector<T> &v){
    for (int i=0;i<v.size();++i){
        os << v[i] << (i+1==v.size()?"": " ");
    }
    return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const pair<T,U> &p){
    os << '(' << p.first << ',' << p.second << ')';
    return os;
}
template<typename T,typename U,typename V>
ostream&operator<<(ostream &os,const tuple<T,U,V> &t){
    os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ')';
    return os;
}
template<typename T,typename U,typename V,typename W>
ostream&operator<<(ostream &os,const tuple<T,U,V,W> &t){
    os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ',' << get<3>(t) << ')';
    return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const map<T,U> &m){
    os << '{';
    for (auto itr=m.begin();itr!=m.end();){
        os << '(' << itr->first << ',' << itr->second << ')';
        if (++itr!=m.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const unordered_map<T,U> &m){
    os << '{';
    for (auto itr=m.begin();itr!=m.end();){
        os << '(' << itr->first << ',' << itr->second << ')';
        if (++itr!=m.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const set<T> &s){
    os << '{';
    for (auto itr=s.begin();itr!=s.end();){
        os << *itr;
        if (++itr!=s.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const multiset<T> &s){
    os << '{';
    for (auto itr=s.begin();itr!=s.end();){
        os << *itr;
        if (++itr!=s.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const unordered_set<T> &s){
    os << '{';
    for (auto itr=s.begin();itr!=s.end();){
        os << *itr;
        if (++itr!=s.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const deque<T> &v){
    for (int i=0;i<v.size();++i){
        os << v[i] << (i+1==v.size()?"": " ");
    }
    return os;
}

void debug_out(){cerr << '\n';}
template<class Head,class... Tail>
void debug_out(Head&& head,Tail&&... tail){
    cerr << head;
    if (sizeof...(Tail)>0) cerr << ", ";
    debug_out(move(tail)...);
}
#ifdef LOCAL
#define debug(...) cerr << " ";\
cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n';\
cerr << " ";\
debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif

template<typename T> T gcd(T x,T y){return y!=0?gcd(y,x%y):x;}
template<typename T> T lcm(T x,T y){return x/gcd(x,y)*y;}

template<class T1,class T2> inline bool chmin(T1 &a,T2 b){
    if (a>b){a=b; return true;} return false;
}
template<class T1,class T2> inline bool chmax(T1 &a,T2 b){
    if (a<b){a=b; return true;} return false;
}
#pragma endregion

#ifndef ATCODER_INTERNAL_CSR_HPP
#define ATCODER_INTERNAL_CSR_HPP 1

#include <algorithm>
#include <utility>
#include <vector>

namespace atcoder {
namespace internal {

template <class E> struct csr {
    std::vector<int> start;
    std::vector<E> elist;
    csr(int n, const std::vector<std::pair<int, E>>& edges)
        : start(n + 1), elist(edges.size()) {
        for (auto e : edges) {
            start[e.first + 1]++;
        }
        for (int i = 1; i <= n; i++) {
            start[i] += start[i - 1];
        }
        auto counter = start;
        for (auto e : edges) {
            elist[counter[e.first]++] = e.second;
        }
    }
};

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_CSR_HPP

#ifndef ATCODER_INTERNAL_QUEUE_HPP
#define ATCODER_INTERNAL_QUEUE_HPP 1

#include <vector>

namespace atcoder {

namespace internal {

template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_QUEUE_HPP

#ifndef ATCODER_MINCOSTFLOW_HPP
#define ATCODER_MINCOSTFLOW_HPP 1

#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        assert(0 <= cost);
        int m = int(_edges.size());
        _edges.push_back({from, to, cap, 0, cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(_edges.size());
        assert(0 <= i && i < m);
        return _edges[i];
    }
    std::vector<edge> edges() { return _edges; }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);

        int m = int(_edges.size());
        std::vector<int> edge_idx(m);

        auto g = [&]() {
            std::vector<int> degree(_n), redge_idx(m);
            std::vector<std::pair<int, _edge>> elist;
            elist.reserve(2 * m);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] = degree[e.from]++;
                redge_idx[i] = degree[e.to]++;
                elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
                elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
            }
            auto _g = internal::csr<_edge>(_n, elist);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] += _g.start[e.from];
                redge_idx[i] += _g.start[e.to];
                _g.elist[edge_idx[i]].rev = redge_idx[i];
                _g.elist[redge_idx[i]].rev = edge_idx[i];
            }
            return _g;
        }();

        auto result = slope(g, s, t, flow_limit);

        for (int i = 0; i < m; i++) {
            auto e = g.elist[edge_idx[i]];
            _edges[i].flow = _edges[i].cap - e.cap;
        }

        return result;
    }

  private:
    int _n;
    std::vector<edge> _edges;

    // inside edge
    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g,
                                            int s,
                                            int t,
                                            Cap flow_limit) {
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge

        // dual_dist[i] = (dual[i], dist[i])
        std::vector<std::pair<Cost, Cost>> dual_dist(_n);
        std::vector<int> prev_e(_n);
        std::vector<bool> vis(_n);
        struct Q {
            Cost key;
            int to;
            bool operator<(Q r) const { return key > r.key; }
        };
        std::vector<int> que_min;
        std::vector<Q> que;
        auto dual_ref = [&]() {
            for (int i = 0; i < _n; i++) {
                dual_dist[i].second = std::numeric_limits<Cost>::max();
            }
            std::fill(vis.begin(), vis.end(), false);
            que_min.clear();
            que.clear();

            // que[0..heap_r) was heapified
            size_t heap_r = 0;

            dual_dist[s].second = 0;
            que_min.push_back(s);
            while (!que_min.empty() || !que.empty()) {
                int v;
                if (!que_min.empty()) {
                    v = que_min.back();
                    que_min.pop_back();
                } else {
                    while (heap_r < que.size()) {
                        heap_r++;
                        std::push_heap(que.begin(), que.begin() + heap_r);
                    }
                    v = que.front().to;
                    std::pop_heap(que.begin(), que.end());
                    que.pop_back();
                    heap_r--;
                }
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
                for (int i = g.start[v]; i < g.start[v + 1]; i++) {
                    auto e = g.elist[i];
                    if (!e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual_dist[e.to].first + dual_v;
                    if (dual_dist[e.to].second - dist_v > cost) {
                        Cost dist_to = dist_v + cost;
                        dual_dist[e.to].second = dist_to;
                        prev_e[e.to] = e.rev;
                        if (dist_to == dist_v) {
                            que_min.push_back(e.to);
                        } else {
                            que.push_back(Q{dist_to, e.to});
                        }
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
                //         (shortest(s, v) + dual[s] - dual[v]) = - shortest(s,
                //         t) + dual[t] + shortest(s, v) = shortest(s, v) -
                //         shortest(s, t) >= 0 - (n-1)C
                dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
            }
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                auto& e = g.elist[prev_e[v]];
                e.cap += c;
                g.elist[e.rev].cap -= c;
            }
            Cost d = -dual_dist[s].first;
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }
};

}  // namespace atcoder

#endif  // ATCODER_MINCOSTFLOW_HPP

int main(){
    cin.tie(0);
    ios::sync_with_stdio(false);
    int N; ll M; cin >> N >> M;
    vector<int> A(N),B(N),C(N);
    vector<pair<int,int>> Max,Min;
    for (int i=0;i<N;++i){
        cin >> A[i] >> B[i] >> C[i];
        if (A[i]<C[i]) swap(A[i],C[i]);
        Max.emplace_back(A[i],i);
        Min.emplace_back(C[i],i);
    }
    sort(ALL(Max)); sort(ALL(Min));

    atcoder::mcf_graph<int,ll> PD(3*N+2);
    int s=3*N,t=s+1,lb,ub,mid;
    for (int i=0;i<N;++i){
        PD.add_edge(s,i,1,0);
        PD.add_edge(N+i,t,1,0);
        PD.add_edge(2*N+i,t,1,INF-A[Min[i].second]);

        lb=-1,ub=N;
        while (ub-lb>1){
            mid=(ub+lb)>>1;
            (Max[mid].first<B[i]?lb:ub)=mid;
        }
        if (lb>=0) PD.add_edge(i,N+lb,1,INF-B[i]);

        lb=-1,ub=N;
        while (ub-lb>1){
            mid=(ub+lb)>>1;
            (Min[mid].first>B[i]?ub:lb)=mid;
        }
        if (ub<N) PD.add_edge(i,2*N+ub,1,0);
    }
    for (int i=0;i<N-1;++i){
        PD.add_edge(N+i+1,N+i,N,0);
        PD.add_edge(2*N+i,2*N+i+1,N,0);
    }

    auto res=PD.flow(s,t,N);
    if (res.first<N){
        cout << "NO" << '\n';
        return 0;
    }
    cout << "YES" << '\n';
    ll ans=ll(INF)*N-res.second;
    cout << (ans>=M?"KADOMATSU!":"NO") << '\n';
}
0