結果

問題 No.1341 真ん中を入れ替えて門松列
ユーザー KudeKude
提出日時 2021-01-15 23:50:33
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 823 ms / 2,000 ms
コード長 9,570 bytes
コンパイル時間 3,026 ms
コンパイル使用メモリ 232,008 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-05-05 02:07:08
合計ジャッジ時間 9,061 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 4 ms
5,376 KB
testcase_07 AC 424 ms
6,440 KB
testcase_08 AC 5 ms
5,924 KB
testcase_09 AC 273 ms
6,432 KB
testcase_10 AC 395 ms
6,824 KB
testcase_11 AC 393 ms
6,820 KB
testcase_12 AC 359 ms
6,944 KB
testcase_13 AC 586 ms
6,820 KB
testcase_14 AC 749 ms
6,824 KB
testcase_15 AC 814 ms
6,940 KB
testcase_16 AC 823 ms
6,940 KB
testcase_17 AC 809 ms
6,696 KB
testcase_18 AC 285 ms
6,824 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>

#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>


#include <algorithm>
#include <utility>
#include <vector>

namespace atcoder {
namespace internal {

template <class E> struct csr {
    std::vector<int> start;
    std::vector<E> elist;
    csr(int n, const std::vector<std::pair<int, E>>& edges)
        : start(n + 1), elist(edges.size()) {
        for (auto e : edges) {
            start[e.first + 1]++;
        }
        for (int i = 1; i <= n; i++) {
            start[i] += start[i - 1];
        }
        auto counter = start;
        for (auto e : edges) {
            elist[counter[e.first]++] = e.second;
        }
    }
};

}  // namespace internal

}  // namespace atcoder


#include <vector>

namespace atcoder {

namespace internal {

template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        assert(0 <= cost);
        int m = int(_edges.size());
        _edges.push_back({from, to, cap, 0, cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(_edges.size());
        assert(0 <= i && i < m);
        return _edges[i];
    }
    std::vector<edge> edges() { return _edges; }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);

        int m = int(_edges.size());
        std::vector<int> edge_idx(m);

        auto g = [&]() {
            std::vector<int> degree(_n), redge_idx(m);
            std::vector<std::pair<int, _edge>> elist;
            elist.reserve(2 * m);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] = degree[e.from]++;
                redge_idx[i] = degree[e.to]++;
                elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
                elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
            }
            auto _g = internal::csr<_edge>(_n, elist);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] += _g.start[e.from];
                redge_idx[i] += _g.start[e.to];
                _g.elist[edge_idx[i]].rev = redge_idx[i];
                _g.elist[redge_idx[i]].rev = edge_idx[i];
            }
            return _g;
        }();

        auto result = slope(g, s, t, flow_limit);

        for (int i = 0; i < m; i++) {
            auto e = g.elist[edge_idx[i]];
            _edges[i].flow = _edges[i].cap - e.cap;
        }

        return result;
    }

  private:
    int _n;
    std::vector<edge> _edges;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g,
                                            int s,
                                            int t,
                                            Cap flow_limit) {

        std::vector<std::pair<Cost, Cost>> dual_dist(_n);
        std::vector<int> prev_e(_n);
        std::vector<bool> vis(_n);
        struct Q {
            Cost key;
            int to;
            bool operator<(Q r) const { return key > r.key; }
        };
        std::vector<int> que_min;
        std::vector<Q> que;
        auto dual_ref = [&]() {
            for (int i = 0; i < _n; i++) {
                dual_dist[i].second = std::numeric_limits<Cost>::max();
            }
            std::fill(vis.begin(), vis.end(), false);
            que_min.clear();
            que.clear();

            size_t heap_r = 0;

            dual_dist[s].second = 0;
            que_min.push_back(s);
            while (!que_min.empty() || !que.empty()) {
                int v;
                if (!que_min.empty()) {
                    v = que_min.back();
                    que_min.pop_back();
                } else {
                    while (heap_r < que.size()) {
                        heap_r++;
                        std::push_heap(que.begin(), que.begin() + heap_r);
                    }
                    v = que.front().to;
                    std::pop_heap(que.begin(), que.end());
                    que.pop_back();
                    heap_r--;
                }
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
                for (int i = g.start[v]; i < g.start[v + 1]; i++) {
                    auto e = g.elist[i];
                    if (!e.cap) continue;
                    Cost cost = e.cost - dual_dist[e.to].first + dual_v;
                    if (dual_dist[e.to].second - dist_v > cost) {
                        Cost dist_to = dist_v + cost;
                        dual_dist[e.to].second = dist_to;
                        prev_e[e.to] = e.rev;
                        if (dist_to == dist_v) {
                            que_min.push_back(e.to);
                        } else {
                            que.push_back(Q{dist_to, e.to});
                        }
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
            }
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                auto& e = g.elist[prev_e[v]];
                e.cap += c;
                g.elist[e.rev].cap -= c;
            }
            Cost d = -dual_dist[s].first;
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }
};

}  // namespace atcoder

using namespace std;
using namespace atcoder;
#define rep(i,n) for(int i = 0; i < (n); ++i)
#define rrep(i,n) for(int i = (n)-1; i >= 0; --i)
template<class T> void chmax(T& a, const T& b) {a = max(a, b);}
template<class T> void chmin(T& a, const T& b) {a = min(a, b);}
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
using ll = long long;
using P = pair<int,int>;
using VI = vector<int>;
using VVI = vector<VI>;
using VL = vector<ll>;
using VVL = vector<VL>;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    ll m;
    cin >> n >> m;
    VI a(n), b(n), c(n);
    rep(i, n) {
        cin >> a[i] >> b[i] >> c[i];
        if (a[i] > c[i]) swap(a[i], c[i]);
    }
    sort(all(b));
    int lb = 0, rb = lb + n, bb = rb + n, acb = bb + n, s = acb + n, t = s + 1;
    mcf_graph<int, ll> g(t + 1);
    ll t_height = 1001001001LL * (n + 10);
    VL r_height(n);
    rep(i, n) r_height[i] = 1001001001LL * (i + 1);
    rep(i, n - 1) {
        g.add_edge(lb + i + 1, lb + i, 5000, 0);
    }
    rep(i, n) {
        g.add_edge(lb + i, bb + i, 1, 0);
    }
    rep(i, n - 1) {
        g.add_edge(rb + i, rb + i + 1, 5000, r_height[i + 1] - r_height[i] - (b[i + 1] - b[i]));
    }
    rep(i, n) {
        g.add_edge(rb + i, bb + i, 1, t_height - r_height[i]);
    }
    rep(i, n) {
        g.add_edge(bb + i, t, 1, 0);
    }

    rep(i, n) {
        g.add_edge(s, acb + i, 1, 0);
    }
    rep(i, n) {
        int u = lower_bound(all(b), a[i]) - b.begin();
        --u;
        if (u >= 0) {
            g.add_edge(acb + i, lb + u, 1, t_height - c[i]);
        }
        int v = upper_bound(all(b), c[i]) - b.begin();
        if (v < n) {
            g.add_edge(acb + i, rb + v, 1, r_height[v] - b[v]);
        }
    }
    auto [cap, cost] = g.flow(s, t);
    if (cap != n) {
        cout << "NO\n";
        return 0;
    }
    cout << "YES\n";
    cost -= t_height * n;
    cost = -cost;
    if (cost >= m) {
        cout << "KADOMATSU!" << '\n';
    } else {
        cout << "NO" << '\n';
    }
}
0