結果

問題 No.1341 真ん中を入れ替えて門松列
ユーザー tatyamtatyam
提出日時 2021-01-16 03:43:06
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 10,356 bytes
コンパイル時間 2,983 ms
コンパイル使用メモリ 235,648 KB
実行使用メモリ 25,796 KB
最終ジャッジ日時 2024-11-26 22:07:04
合計ジャッジ時間 37,571 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,640 KB
testcase_01 AC 2 ms
17,636 KB
testcase_02 AC 2 ms
13,636 KB
testcase_03 AC 2 ms
17,744 KB
testcase_04 AC 2 ms
13,640 KB
testcase_05 AC 2 ms
13,636 KB
testcase_06 AC 32 ms
13,636 KB
testcase_07 TLE -
testcase_08 AC 846 ms
15,736 KB
testcase_09 TLE -
testcase_10 TLE -
testcase_11 TLE -
testcase_12 TLE -
testcase_13 TLE -
testcase_14 TLE -
testcase_15 TLE -
testcase_16 TLE -
testcase_17 TLE -
testcase_18 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;


class adjust_index {
private:
  const size_t M_stuff, M_size;

public:
  explicit adjust_index(const size_t stuff, const size_t size):
    M_stuff(stuff), M_size(size)
  { }

  size_t operator [] (const size_t index) const {
    assert(index < M_size);
    return M_stuff + index;
  }
  size_t to_index(const size_t fixed) const {
    assert(fixed >= M_stuff);
    assert(fixed < M_size + M_stuff);
    return fixed - M_stuff;
  }
  size_t size() const {
    return M_size;
  }
};
template <class Flow, class Cost>
class network_simplex {
public:
  using flow_type = Flow;
  using cost_type = Cost;
  using size_type = size_t;
  using node_id   = size_t;
  using edge_id   = size_t;

  static_assert(std::is_signed<flow_type>::value, "flow-type must be signed integer");
  static_assert(std::is_integral<flow_type>::value, "flow-type must be signed integer");
  static_assert(std::is_signed<cost_type>::value, "cost-type must be signed integer");
  static_assert(std::is_integral<cost_type>::value, "cost-type must be signed integer");

  struct return_type {
  public:
    const bool feasible;
    const std::vector<cost_type> potentials;
    const std::vector<std::pair<flow_type, cost_type>> edges;

    explicit return_type(
      const bool feasible,
      const std::vector<cost_type> potentials,
      const std::vector<std::pair<flow_type, cost_type>> edges
    ): feasible(feasible), potentials(potentials), edges(edges) { }

    template <class T>
    T calculate() const {
      T res = 0;
      for (const auto &e: edges) {
        res += (T) e.first * e.second;
      }
      return res;
    }
  };

private:
  class edge_type {
  public:
    const node_id src, dst;
    flow_type flow;
    const flow_type capacity;
    const cost_type cost;

    explicit edge_type(
      const node_id src, const node_id dst,
      const flow_type flow, const flow_type capacity,
      const cost_type cost
    ): src(src), dst(dst), flow(flow), capacity(capacity), cost(cost) { }
  };

  class node_type {
  public:
    flow_type balance;
    cost_type potential;
    std::set<edge_id> tree_edges;
    size_type depth;
    edge_id parent_edge;

    explicit node_type(const flow_type balance = 0):
      balance(balance), potential(0), tree_edges(), depth(0), parent_edge(-1)
    { }
  };

  std::vector<edge_type> edges;
  std::vector<node_type> nodes;

  static edge_id rev_id(const edge_id eid) {
    return (eid ^ 1);
  }
  template <class T>
  static bool minimize(T &current, const T &new_cost) {
    if (current > new_cost) { current = new_cost; return true; }
    return false;
  }

  flow_type residual_capacity(const edge_id eid) const {
    return edges[eid].capacity - edges[eid].flow;
  }
  flow_type reduced_cost(const edge_id eid) const {
    return edges[eid].cost + nodes[edges[eid].src].potential - nodes[edges[eid].dst].potential;
  }
  bool send_flow(const edge_id eid, const flow_type flow) {
    edges[eid].flow += flow;
    edges[rev_id(eid)].flow -= flow;
    return edges[eid].flow == edges[eid].capacity;
  }

  void precompute() {
    cost_type inf_cost = 1;
    for (const auto &e: edges) {
      if (e.cost > 0) inf_cost += e.cost;
    }
    const auto root = add_node();
    for (node_id nid = 0; nid != root; ++nid) {
      const auto flow = nodes[nid].balance;
      if (flow < 0) {
        const auto eid = add_edge(root, nid, (flow_type) 0, -flow, inf_cost) << 1;
        send_flow(eid, -flow);
        nodes[root].tree_edges.insert(eid);
        nodes[nid].tree_edges.insert(rev_id(eid));
      }
      else {
        const auto eid = add_edge(nid, root, (flow_type) 0, flow + 1, inf_cost) << 1;
        send_flow(eid, flow);
        nodes[nid].tree_edges.insert(eid);
        nodes[root].tree_edges.insert(rev_id(eid));
      }
    }
    evert(root);
  }

  void evert(const node_id root) {
    std::stack<node_id> stack;
    stack.push(root);
    while (!stack.empty()) {
      const auto nid = stack.top();
      stack.pop();
      for (const auto eid: nodes[nid].tree_edges) {
        if (eid != nodes[nid].parent_edge) {
          const auto dst = edges[eid].dst;
          nodes[dst].potential = nodes[nid].potential + edges[eid].cost;
          nodes[dst].depth = nodes[nid].depth + 1;
          nodes[dst].parent_edge = rev_id(eid);
          stack.push(dst);
        }
      }
    }
  }

  edge_id select_edge() {
    static const size_type block_size = (size_type) std::sqrt(edges.size());
    static size_type edge_scan = 0;
    static const auto advance = [&] {
      if (++edge_scan == edges.size()) edge_scan = 0;
    };
    size_type step = 0;
    while (step < edges.size()) {
      flow_type optimal_cost = 0;
      edge_id select = -1;
      for (size_type minor = 0; minor != block_size; ++minor) {
        if (step == edges.size()) break;
        const edge_id eid = edge_scan;
        advance();
        ++step;
        if (residual_capacity(eid) > 0) {
          if (minimize(optimal_cost, reduced_cost(eid))) select = eid;
        }
      }
      if (~select) return select;
    }
    return (edge_id) -1;
  }

  void pivot(const edge_id eid) {
    flow_type send = residual_capacity(eid);
    auto src_side = edges[eid].src;
    auto dst_side = edges[eid].dst;
    while (src_side != dst_side) {
      if (nodes[src_side].depth > nodes[dst_side].depth) {
        const auto down_edge = rev_id(nodes[src_side].parent_edge);
        minimize(send, residual_capacity(down_edge));
        src_side = edges[down_edge].src;
      }
      else {
        const auto up_edge = nodes[dst_side].parent_edge;
        minimize(send, residual_capacity(up_edge));
        dst_side = edges[up_edge].dst;
      }
    }
    const auto lca = src_side;
    edge_id remove = -1;
    enum leaving_arc { SRC, DST, ENT };
    leaving_arc state = ENT;
    src_side = edges[eid].src;
    while (src_side != lca) {
      const auto down_edge = rev_id(nodes[src_side].parent_edge);
      if (send_flow(down_edge, send)) {
        if (~remove == 0) {
          remove = down_edge;
          state = SRC;
        }
      }
      src_side = edges[down_edge].src;
    }
    if (send_flow(eid, send)) {
      remove = eid;
      state = ENT;
    }
    dst_side = edges[eid].dst;
    while (dst_side != lca) {
      const auto up_edge = nodes[dst_side].parent_edge;
      if (send_flow(up_edge, send)) {
        remove = up_edge;
        state = DST;
      }
      dst_side = edges[up_edge].dst;
    }
    if (state == ENT) return;
    nodes[edges[eid].src].tree_edges.insert(eid);
    nodes[edges[eid].dst].tree_edges.insert(rev_id(eid));
    nodes[edges[remove].src].tree_edges.erase(remove);
    nodes[edges[remove].dst].tree_edges.erase(rev_id(remove));
    evert(state == SRC ? edges[eid].dst : edges[eid].src);
  }

public:
  network_simplex() = default;
  explicit network_simplex(const size_type size) {
    add_nodes(size);
  }

  node_id add_node(const flow_type balance = 0) {
    const node_id res = nodes.size();
    nodes.emplace_back(balance);
    return res;
  }
  adjust_index add_nodes(const size_type size) {
    const size_type cur = nodes.size();
    nodes.resize(cur + size);
    return adjust_index(cur, size);
  }

  void add_supply(const node_id node, const flow_type supply) {
    nodes[node].balance += supply;
  }
  void add_demand(const node_id node, const flow_type demand) {
    nodes[node].balance -= demand;
  }
   
  edge_id add_edge(
    const node_id src, const node_id dst,
    const flow_type lower_bound, const flow_type upper_bound,
    const cost_type cost
  ) {
    const edge_id res = edges.size() >> 1;
    edges.emplace_back(src, dst, lower_bound, upper_bound, cost);
    edges.emplace_back(dst, src, -lower_bound, -lower_bound, -cost);
    if (lower_bound != (flow_type) 0) {
      add_demand(src, lower_bound);
      add_supply(dst, lower_bound);
    }
    return res;
  }

  return_type solve() {
    precompute();
    edge_id select = select_edge();
    while (~select) {
      pivot(select);
      select = select_edge();
    }
    bool feasible = true;
    const auto split = edges.size() - 2 * (nodes.size() - 1);
    for (edge_id eid = split; eid != edges.size(); ++eid) {
      if (edges[eid].flow > 0) {
        feasible = false;
        break;
      }
    }
    std::vector<cost_type> pt(nodes.size() - 1);
    for (node_id nid = 0; nid != nodes.size() - 1; ++nid) {
      pt[nid] = nodes[nid].potential;
    }
    std::vector<std::pair<flow_type, cost_type>> es;
    es.reserve(split >> 1);
    for (edge_id eid = 0; eid != split; eid += 2) {
      es.emplace_back(edges[eid].flow, edges[eid].cost);
    }
    return return_type(feasible, pt, es);
  }

};
using ll = int64_t;
int main(){
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    ll N, M;
    cin >> N >> M;
    vector<ll> A(N), B(N), C(N);
    for(ll i = 0; i < N; i++){
        cin >> A[i] >> B[i] >> C[i];
        if(A[i] > C[i]) swap(A[i], C[i]);
    }
    network_simplex<ll, ll> g;
    g.add_nodes(N * 4 + 2);
    const ll S = N * 4, T = S + 1;
    for(ll i = 0; i < N; i++) g.add_edge(S, i, 0, 1, 0);
    vector<ll> index(N);
    iota(index.begin(), index.end(), 0);
    sort(index.begin(), index.end(), [&](ll x, ll y){ return A[x] < A[y]; });
    for(ll i = 0; i < N; i++){
        auto p = partition_point(index.begin(), index.end(), [&](ll j){ return A[j] <= B[i]; });
        if(p == index.end()) continue;
        g.add_edge(i, *p + N, 0, 1, 0);
    }
    for(ll i = 0; i + 1 < N; i++) g.add_edge(index[i] + N, index[i + 1] + N, 0, N, 0);
    for(ll i = 0; i < N; i++) g.add_edge(i + N, i + N * 3, 0, 1, -C[i]);
    sort(index.begin(), index.end(), [&](ll x, ll y){ return C[x] > C[y]; });
    for(ll i = 0; i < N; i++){
        auto p = partition_point(index.begin(), index.end(), [&](ll j){ return C[j] >= B[i]; });
        if(p == index.end()) continue;
        g.add_edge(i, *p + N * 2, 0, 1, -B[i]);
    }
    for(ll i = 0; i + 1 < N; i++) g.add_edge(index[i] + N * 2, index[i + 1] + N * 2, 0, N, 0);
    for(ll i = 0; i < N; i++) g.add_edge(i + N * 2, i + N * 3, 0, 1, 0);
    for(ll i = 0; i < N; i++) g.add_edge(i + N * 3, T, 0, 1, 0);
    g.add_supply(S, N);
    g.add_demand(T, N);
    const auto ans = g.solve();
    if(!ans.feasible) return puts("NO") & 0;
    puts("YES");
    puts(-ans.calculate<ll>() >= M ? "KADOMATSU!" : "NO");
}
0