結果
問題 | No.306 さいたま2008 |
ユーザー |
![]() |
提出日時 | 2015-11-27 22:50:40 |
言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 9,334 bytes |
コンパイル時間 | 1,261 ms |
コンパイル使用メモリ | 121,728 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2025-02-14 12:09:12 |
合計ジャッジ時間 | 1,995 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 26 |
ソースコード
#include <cassert>// c#include <iostream>// io#include <iomanip>#include <fstream>#include <sstream>#include <vector>// container#include <map>#include <set>#include <queue>#include <bitset>#include <stack>#include <algorithm>// other#include <complex>#include <numeric>#include <functional>#include <random>#include <regex>using namespace std;typedef long long ll;typedef unsigned long long ull;typedef long double ld;#define ALL(c) c.begin(),c.end()#define IN(l,v,r) (l<=v && v < r)template<class T> void UNIQUE(T v){v.erase(unique(ALL(v)),v.end());}//debug#define DUMP(x) cerr << #x <<" = " << (x)#define LINE() cerr<< " (L" << __LINE__ << ")"struct range{struct Iter{int v,step;Iter& operator++(){v+=step;return *this;}bool operator!=(Iter& itr){return v<itr.v;}int& operator*(){return v;}};Iter i, n;range(int i, int n,int step):i({i,step}), n({n,step}){}range(int i, int n):range(i,n,1){}range(int n):range(0,n){}Iter& begin(){return i;}Iter& end(){return n;}};struct rrange{struct Iter{int v,step;Iter& operator++(){v-=step;return *this;}bool operator!=(Iter& itr){return v>itr.v;}int& operator*(){return v;}};Iter i, n;rrange(int i, int n,int step):i({i-1,step}), n({n-1,step}){}rrange(int i, int n):rrange(i,n,1){}rrange(int n) :rrange(0,n){}Iter& begin(){return n;}Iter& end(){return i;}};//inputtemplate<typename T1,typename T2> istream& operator >> (istream& is,pair<T1,T2>& p){return is>>p.first>>p.second;}template<typename T1> istream& operator >> (istream& is,tuple<T1>& t){return is >> get<0>(t);}template<typename T1,typename T2> istream& operator >> (istream& is,tuple<T1,T2>& t){return is >> get<0>(t) >> get<1>(t);}template<typename T1,typename T2,typename T3> istream& operator >> (istream& is,tuple<T1,T2,T3>& t){return is >>get<0>(t)>>get<1>(t)>>get<2>(t);}template<typename T1,typename T2,typename T3,typename T4> istream& operator >> (istream& is,tuple<T1,T2,T3,T4>& t){return is >> get<0>(t)>>get<1>(t)>>get<2>(t)>>get<3>(t);}template<typename T> istream& operator >> (istream& is,vector<T>& as){for(int i:range(as.size()))is >>as[i];return is;}//outputtemplate<typename T> ostream& operator << (ostream& os, const set<T>& ss){for(auto a:ss){if(a!=ss.begin())os<<" "; os<<a;}return os;}template<typename T1,typename T2> ostream& operator << (ostream& os, const pair<T1,T2>& p){return os<<p.first<<" "<<p.second;}template<typename K,typename V> ostream& operator << (ostream& os, const map<K,V>& m){bool isF=true;for(auto& p:m){if(!isF)os<<endl;os<<p;isF=false;}return os;}template<typename T1> ostream& operator << (ostream& os, const tuple<T1>& t){return os << get<0>(t);}template<typename T1,typename T2> ostream& operator << (ostream& os, const tuple<T1,T2>& t){return os << get<0>(t)<<" "<<get<1>(t);}template<typename T1,typename T2,typename T3> ostream& operator << (ostream& os, const tuple<T1,T2,T3>& t){return os << get<0>(t)<<" "<<get<1>(t)<<""<<get<2>(t);}template<typename T1,typename T2,typename T3,typename T4> ostream& operator << (ostream& os, const tuple<T1,T2,T3,T4>& t){return os << get<0>(t)<<" "<<get<1>(t)<<" "<<get<2>(t)<<" "<<get<3>(t);}template<typename T> ostream& operator << (ostream& os, const vector<T>& as){for(int i:range(as.size())){if(i!=0)os<<" "; os<<as[i];}return os;}template<typename T> ostream& operator << (ostream& os, const vector<vector<T>>& as){for(int i:range(as.size())){if(i!=0)os<<endl; os<<as[i];}returnos;}// valuestemplate<typename T> inline T INF(){assert(false);};template<> inline int INF<int>(){return 1<<28;};template<> inline ll INF<ll>(){return 1LL<<58;};template<> inline double INF<double>(){return 1e16;};template<> inline long double INF<long double>(){return 1e16;};template<class T> inline T EPS(){assert(false);};template<> inline int EPS<int>(){return 1;};template<> inline ll EPS<ll>(){return 1LL;};template<> inline double EPS<double>(){return 1e-8;};template<> inline long double EPS<long double>(){return 1e-8;};// min{2^r | n < 2^r}template<typename T> T upper_pow2(T n){ T res=1;while(res<n)res<<=1;return res;}// max{d | 2^d <= n}template<typename T> T msb(T n){ int d=62;while((1LL<<d)>n)d--;return d;}template<typename T,typename U> T pmod(T v,U M){return (v%M+M)%M;}ll gcd_positive(ll a,ll b) { return b == 0 ? a : gcd_positive(b,a%b); }ll gcd(ll a,ll b) { return gcd_positive(abs(a), abs(b)); }ll lcm(ll a,ll b){return a/gcd(a,b)*b;}namespace _double_tmpl{typedef long double D;static constexpr D Ae=0;D A(D a,D b){return a+b;}D Ainv(D a){return -a;}D S(D a,D b){return A(a,Ainv(b));}static constexpr D Me=1;D M(D a,D b){return a*b;}D Minv(D a){return 1.0/a;};int sig(D a,D b=0){return a<b-EPS<D>()?-1:a>b+EPS<D>()?1:0;}template<typename T> bool eq(const T& a,const T& b){return sig(abs(a-b))==0;}D pfmod(D v,D MOD=2*M_PI){return fmod(fmod(v,MOD)+MOD,MOD);}//[0,PI)D AbsArg(D a){D ret=pfmod(max(a,-a),2*M_PI);return min(ret,2*M_PI-ret);}}using namespace _double_tmpl;// double PI=acos(-1);typedef complex<D> P,Vec;const P O=P(0,0);#define X real()#define Y imag()istream& operator >> (istream& is,complex<D>& p){D x,y;is >> x >> y;p=P(x,y);return is;}bool compX (const P& a,const P& b){return !eq(a.X,b.X)?sig(a.X,b.X)<0:sig(a.Y,b.Y)<0;}bool compY (const P& a,const P& b){return !eq(a.Y,b.Y)?sig(a.Y,b.Y)<0:sig(a.X,b.X)<0;}// a×bD cross(const Vec& a,const Vec& b){return imag(conj(a)*b);}// a・bD dot(const Vec&a,const Vec& b) {return real(conj(a)*b);}int ccw(const P& a,P b,P c){b -= a; c -= a;if (sig(cross(b,c))>0) return +1; // counter clockwiseif (sig(cross(b,c))<0) return -1; // clockwiseif (sig(dot(b,c)) < 0) return +2; // c--a--b on lineif (sig(norm(b),norm(c))<0) return -2; // a--b--c on linereturn 0;}namespace std{bool operator < (const P& a,const P& b){return compX(a,b);}bool operator == (const P& a,const P& b){return eq(a,b);}};namespace _L{struct L : public vector<P> {P vec() const {return this->at(1)-this->at(0);}L(const P &a, const P &b){push_back(a); push_back(b);}L(){push_back(P(0,0));push_back(P(0,0));}};istream& operator >> (istream& is,L& l){P s,t;is >> s >> t;l=L(s,t);return is;}bool isIntersectLL(const L &l, const L &m) {return sig(cross(l.vec(), m.vec()))!=0 || // non-parallelsig(cross(l.vec(), m[0]-l[0])) ==0; // same line}bool isIntersectLS(const L &l, const L &s) {return sig(cross(l.vec(), s[0]-l[0])* // s[0] is left of lcross(l.vec(), s[1]-l[0]))<=0; // s[1] is right of l}bool isIntersectLP(const L &l, const P &p) {return sig(cross(l[1]-p, l[0]-p))==0;}// verified by ACAC003 B// http://judge.u-aizu.ac.jp/onlinejudge/creview.jsp?rid=899178&cid=ACAC003bool isIntersectSS(const L &s, const L &t) {return ccw(s[0],s[1],t[0])*ccw(s[0],s[1],t[1]) <= 0 &&ccw(t[0],t[1],s[0])*ccw(t[0],t[1],s[1]) <= 0;}bool isIntersectSP(const L &s, const P &p) {return sig(abs(s[0]-p)+abs(s[1]-p),abs(s[1]-s[0])) <=0; // triangle inequality}// 直線へ射影した時の点// verified by AOJLIB// http://judge.u-aizu.ac.jp/onlinejudge/review.jsp?rid=1092212P projection(const L &l, const P &p) {D t = dot(p-l[0],l.vec()) / norm(l.vec());return l[0] + t * l.vec();}//対称な点// verified by AOJLIB// http://judge.u-aizu.ac.jp/onlinejudge/review.jsp?rid=1092214P reflection(const L &l, const P &p) {return p + 2.0L * (projection(l, p) - p);}D distanceLP(const L &l, const P &p) {return abs(p - projection(l, p));}D distanceLL(const L &l, const L &m) {return isIntersectLL(l, m) ? 0 : distanceLP(l, m[0]);}D distanceLS(const L &l, const L &s) {if (isIntersectLS(l, s)) return 0;return min(distanceLP(l, s[0]), distanceLP(l, s[1]));}D distanceSP(const L &s, const P &p) {const P r = projection(s, p);if (isIntersectSP(s, r)) return abs(r - p);return min(abs(s[0] - p), abs(s[1] - p));}D distanceSS(const L &s, const L &t) {if (isIntersectSS(s, t)) return 0;return min(min(distanceSP(s, t[0]), distanceSP(s, t[1])),min(distanceSP(t, s[0]), distanceSP(t, s[1])));}// 交点計算// verified by AOJLIB// http://judge.u-aizu.ac.jp/onlinejudge/review.jsp?rid=1092231P crosspoint(const L &l, const L &m) {D A = cross(l.vec(), m.vec()),B = cross(l.vec(), l[1] - m[0]);if (sig(A)==0 && sig(B)==0) return m[0]; // same lineassert(sig(A)!=0);//err -> 交点を持たない.return m[0] + B / A * (m[1] - m[0]);}}using namespace _L;class Main{public:void run(){P a,b;cin >> a >> b; b = P(-b.X,b.Y);L l(a,b),l0(P(0,0),P(0,1));cout << crosspoint(l,l0).Y << endl;}};int main(){cout <<fixed<<setprecision(20);cin.tie(0);ios::sync_with_stdio(false);Main().run();return 0;}