結果
問題 | No.306 さいたま2008 |
ユーザー | shimomire |
提出日時 | 2015-11-27 22:50:43 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 9,334 bytes |
コンパイル時間 | 1,453 ms |
コンパイル使用メモリ | 122,532 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-14 00:11:55 |
合計ジャッジ時間 | 1,961 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 1 ms
6,944 KB |
testcase_09 | AC | 1 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,940 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 2 ms
6,940 KB |
testcase_22 | AC | 2 ms
6,940 KB |
ソースコード
#include <cassert>// c #include <iostream>// io #include <iomanip> #include <fstream> #include <sstream> #include <vector>// container #include <map> #include <set> #include <queue> #include <bitset> #include <stack> #include <algorithm>// other #include <complex> #include <numeric> #include <functional> #include <random> #include <regex> using namespace std; typedef long long ll;typedef unsigned long long ull;typedef long double ld; #define ALL(c) c.begin(),c.end() #define IN(l,v,r) (l<=v && v < r) template<class T> void UNIQUE(T v){v.erase(unique(ALL(v)),v.end());} //debug #define DUMP(x) cerr << #x <<" = " << (x) #define LINE() cerr<< " (L" << __LINE__ << ")" struct range{ struct Iter{ int v,step; Iter& operator++(){v+=step;return *this;} bool operator!=(Iter& itr){return v<itr.v;} int& operator*(){return v;} }; Iter i, n; range(int i, int n,int step):i({i,step}), n({n,step}){} range(int i, int n):range(i,n,1){} range(int n):range(0,n){} Iter& begin(){return i;} Iter& end(){return n;} }; struct rrange{ struct Iter{ int v,step; Iter& operator++(){v-=step;return *this;} bool operator!=(Iter& itr){return v>itr.v;} int& operator*(){return v;} }; Iter i, n; rrange(int i, int n,int step):i({i-1,step}), n({n-1,step}){} rrange(int i, int n):rrange(i,n,1){} rrange(int n) :rrange(0,n){} Iter& begin(){return n;} Iter& end(){return i;} }; //input template<typename T1,typename T2> istream& operator >> (istream& is,pair<T1,T2>& p){return is>>p.first>>p.second;} template<typename T1> istream& operator >> (istream& is,tuple<T1>& t){return is >> get<0>(t);} template<typename T1,typename T2> istream& operator >> (istream& is,tuple<T1,T2>& t){return is >> get<0>(t) >> get<1>(t);} template<typename T1,typename T2,typename T3> istream& operator >> (istream& is,tuple<T1,T2,T3>& t){return is >>get<0>(t)>>get<1>(t)>>get<2>(t);} template<typename T1,typename T2,typename T3,typename T4> istream& operator >> (istream& is,tuple<T1,T2,T3,T4>& t){return is >> get<0>(t)>>get<1>(t)>>get<2>(t)>>get<3>(t);} template<typename T> istream& operator >> (istream& is,vector<T>& as){for(int i:range(as.size()))is >>as[i];return is;} //output template<typename T> ostream& operator << (ostream& os, const set<T>& ss){for(auto a:ss){if(a!=ss.begin())os<<" "; os<<a;}return os;} template<typename T1,typename T2> ostream& operator << (ostream& os, const pair<T1,T2>& p){return os<<p.first<<" "<<p.second;} template<typename K,typename V> ostream& operator << (ostream& os, const map<K,V>& m){bool isF=true;for(auto& p:m){if(!isF)os<<endl;os<<p;isF=false;}return os;} template<typename T1> ostream& operator << (ostream& os, const tuple<T1>& t){return os << get<0>(t);} template<typename T1,typename T2> ostream& operator << (ostream& os, const tuple<T1,T2>& t){return os << get<0>(t)<<" "<<get<1>(t);} template<typename T1,typename T2,typename T3> ostream& operator << (ostream& os, const tuple<T1,T2,T3>& t){return os << get<0>(t)<<" "<<get<1>(t)<<" "<<get<2>(t);} template<typename T1,typename T2,typename T3,typename T4> ostream& operator << (ostream& os, const tuple<T1,T2,T3,T4>& t){return os << get<0>(t)<<" "<<get<1>(t)<<" "<<get<2>(t)<<" "<<get<3>(t);} template<typename T> ostream& operator << (ostream& os, const vector<T>& as){for(int i:range(as.size())){if(i!=0)os<<" "; os<<as[i];}return os;} template<typename T> ostream& operator << (ostream& os, const vector<vector<T>>& as){for(int i:range(as.size())){if(i!=0)os<<endl; os<<as[i];}return os;} // values template<typename T> inline T INF(){assert(false);}; template<> inline int INF<int>(){return 1<<28;}; template<> inline ll INF<ll>(){return 1LL<<58;}; template<> inline double INF<double>(){return 1e16;}; template<> inline long double INF<long double>(){return 1e16;}; template<class T> inline T EPS(){assert(false);}; template<> inline int EPS<int>(){return 1;}; template<> inline ll EPS<ll>(){return 1LL;}; template<> inline double EPS<double>(){return 1e-8;}; template<> inline long double EPS<long double>(){return 1e-8;}; // min{2^r | n < 2^r} template<typename T> T upper_pow2(T n){ T res=1;while(res<n)res<<=1;return res;} // max{d | 2^d <= n} template<typename T> T msb(T n){ int d=62;while((1LL<<d)>n)d--;return d;} template<typename T,typename U> T pmod(T v,U M){return (v%M+M)%M;} ll gcd_positive(ll a,ll b) { return b == 0 ? a : gcd_positive(b,a%b); } ll gcd(ll a,ll b) { return gcd_positive(abs(a), abs(b)); } ll lcm(ll a,ll b){return a/gcd(a,b)*b;} namespace _double_tmpl{ typedef long double D; static constexpr D Ae=0; D A(D a,D b){return a+b;}D Ainv(D a){return -a;} D S(D a,D b){return A(a,Ainv(b));} static constexpr D Me=1; D M(D a,D b){return a*b;}D Minv(D a){return 1.0/a;}; int sig(D a,D b=0){return a<b-EPS<D>()?-1:a>b+EPS<D>()?1:0;} template<typename T> bool eq(const T& a,const T& b){return sig(abs(a-b))==0;} D pfmod(D v,D MOD=2*M_PI){return fmod(fmod(v,MOD)+MOD,MOD);} //[0,PI) D AbsArg(D a){ D ret=pfmod(max(a,-a),2*M_PI);return min(ret,2*M_PI-ret); } } using namespace _double_tmpl; // double PI=acos(-1); typedef complex<D> P,Vec; const P O=P(0,0); #define X real() #define Y imag() istream& operator >> (istream& is,complex<D>& p){ D x,y;is >> x >> y;p=P(x,y);return is; } bool compX (const P& a,const P& b){return !eq(a.X,b.X)?sig(a.X,b.X)<0:sig(a.Y,b.Y)<0;} bool compY (const P& a,const P& b){return !eq(a.Y,b.Y)?sig(a.Y,b.Y)<0:sig(a.X,b.X)<0;} // a×b D cross(const Vec& a,const Vec& b){return imag(conj(a)*b);} // a・b D dot(const Vec&a,const Vec& b) {return real(conj(a)*b);} int ccw(const P& a,P b,P c){ b -= a; c -= a; if (sig(cross(b,c))>0) return +1; // counter clockwise if (sig(cross(b,c))<0) return -1; // clockwise if (sig(dot(b,c)) < 0) return +2; // c--a--b on line if (sig(norm(b),norm(c))<0) return -2; // a--b--c on line return 0; } namespace std{ bool operator < (const P& a,const P& b){return compX(a,b);} bool operator == (const P& a,const P& b){return eq(a,b);} }; namespace _L{ struct L : public vector<P> { P vec() const {return this->at(1)-this->at(0);} L(const P &a, const P &b){push_back(a); push_back(b);} L(){push_back(P(0,0));push_back(P(0,0));} }; istream& operator >> (istream& is,L& l){P s,t;is >> s >> t;l=L(s,t);return is;} bool isIntersectLL(const L &l, const L &m) { return sig(cross(l.vec(), m.vec()))!=0 || // non-parallel sig(cross(l.vec(), m[0]-l[0])) ==0; // same line } bool isIntersectLS(const L &l, const L &s) { return sig(cross(l.vec(), s[0]-l[0])* // s[0] is left of l cross(l.vec(), s[1]-l[0]))<=0; // s[1] is right of l } bool isIntersectLP(const L &l, const P &p) { return sig(cross(l[1]-p, l[0]-p))==0; } // verified by ACAC003 B // http://judge.u-aizu.ac.jp/onlinejudge/creview.jsp?rid=899178&cid=ACAC003 bool isIntersectSS(const L &s, const L &t) { return ccw(s[0],s[1],t[0])*ccw(s[0],s[1],t[1]) <= 0 && ccw(t[0],t[1],s[0])*ccw(t[0],t[1],s[1]) <= 0; } bool isIntersectSP(const L &s, const P &p) { return sig(abs(s[0]-p)+abs(s[1]-p),abs(s[1]-s[0])) <=0; // triangle inequality } // 直線へ射影した時の点 // verified by AOJLIB // http://judge.u-aizu.ac.jp/onlinejudge/review.jsp?rid=1092212 P projection(const L &l, const P &p) { D t = dot(p-l[0],l.vec()) / norm(l.vec()); return l[0] + t * l.vec(); } //対称な点 // verified by AOJLIB // http://judge.u-aizu.ac.jp/onlinejudge/review.jsp?rid=1092214 P reflection(const L &l, const P &p) { return p + 2.0L * (projection(l, p) - p); } D distanceLP(const L &l, const P &p) { return abs(p - projection(l, p)); } D distanceLL(const L &l, const L &m) { return isIntersectLL(l, m) ? 0 : distanceLP(l, m[0]); } D distanceLS(const L &l, const L &s) { if (isIntersectLS(l, s)) return 0; return min(distanceLP(l, s[0]), distanceLP(l, s[1])); } D distanceSP(const L &s, const P &p) { const P r = projection(s, p); if (isIntersectSP(s, r)) return abs(r - p); return min(abs(s[0] - p), abs(s[1] - p)); } D distanceSS(const L &s, const L &t) { if (isIntersectSS(s, t)) return 0; return min(min(distanceSP(s, t[0]), distanceSP(s, t[1])), min(distanceSP(t, s[0]), distanceSP(t, s[1]))); } // 交点計算 // verified by AOJLIB // http://judge.u-aizu.ac.jp/onlinejudge/review.jsp?rid=1092231 P crosspoint(const L &l, const L &m) { D A = cross(l.vec(), m.vec()),B = cross(l.vec(), l[1] - m[0]); if (sig(A)==0 && sig(B)==0) return m[0]; // same line assert(sig(A)!=0);//err -> 交点を持たない. return m[0] + B / A * (m[1] - m[0]); } } using namespace _L; class Main{ public: void run(){ P a,b;cin >> a >> b; b = P(-b.X,b.Y); L l(a,b),l0(P(0,0),P(0,1)); cout << crosspoint(l,l0).Y << endl; } }; int main(){ cout <<fixed<<setprecision(20); cin.tie(0); ios::sync_with_stdio(false); Main().run(); return 0; }