結果
| 問題 |
No.1341 真ん中を入れ替えて門松列
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2021-01-16 12:55:52 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 8 ms / 2,000 ms |
| コード長 | 61,810 bytes |
| コンパイル時間 | 9,672 ms |
| コンパイル使用メモリ | 302,036 KB |
| 最終ジャッジ日時 | 2025-01-17 21:27:25 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 14 |
ソースコード
#line 1 "atcoder-workspace/17.cc"
// #undef _GLIBCXX_DEBUG
// #define NDEBUG
#include <bits/extc++.h>
#line 2 "Library/lib/alias"
/**
* @file alias
* @brief Alias
*/
#line 13 "Library/lib/alias"
#line 1 "Library/lib/bit"
#if __cplusplus > 201703L
#include <bit>
#else
#ifndef _GLIBCXX_BIT
#define _GLIBCXX_BIT 1
#include <limits>
#include <type_traits>
namespace std {
template <typename _Tp> constexpr _Tp __rotl(_Tp __x, int __s) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
const int __r = __s % _Nd;
if (__r == 0)
return __x;
else if (__r > 0)
return (__x << __r) | (__x >> ((_Nd - __r) % _Nd));
else
return (__x >> -__r) | (__x << ((_Nd + __r) % _Nd)); // rotr(x, -r)
}
template <typename _Tp> constexpr _Tp __rotr(_Tp __x, int __s) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
const int __r = __s % _Nd;
if (__r == 0)
return __x;
else if (__r > 0)
return (__x >> __r) | (__x << ((_Nd - __r) % _Nd));
else
return (__x << -__r) | (__x >> ((_Nd + __r) % _Nd)); // rotl(x, -r)
}
template <typename _Tp> constexpr int __countl_zero(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return _Nd;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) {
constexpr int __diff = _Nd_u - _Nd;
return __builtin_clz(__x) - __diff;
} else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) {
constexpr int __diff = _Nd_ul - _Nd;
return __builtin_clzl(__x) - __diff;
} else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) {
constexpr int __diff = _Nd_ull - _Nd;
return __builtin_clzll(__x) - __diff;
} else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
unsigned long long __high = __x >> _Nd_ull;
if (__high != 0) {
constexpr int __diff = (2 * _Nd_ull) - _Nd;
return __builtin_clzll(__high) - __diff;
}
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
return (_Nd - _Nd_ull) + __builtin_clzll(__low);
}
}
template <typename _Tp> constexpr int __countl_one(_Tp __x) noexcept {
if (__x == numeric_limits<_Tp>::max()) return numeric_limits<_Tp>::digits;
return __countl_zero<_Tp>((_Tp)~__x);
}
template <typename _Tp> constexpr int __countr_zero(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return _Nd;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u)
return __builtin_ctz(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul)
return __builtin_ctzl(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull)
return __builtin_ctzll(__x);
else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
if (__low != 0) return __builtin_ctzll(__low);
unsigned long long __high = __x >> _Nd_ull;
return __builtin_ctzll(__high) + _Nd_ull;
}
}
template <typename _Tp> constexpr int __countr_one(_Tp __x) noexcept {
if (__x == numeric_limits<_Tp>::max()) return numeric_limits<_Tp>::digits;
return __countr_zero((_Tp)~__x);
}
template <typename _Tp> constexpr int __popcount(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return 0;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u)
return __builtin_popcount(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul)
return __builtin_popcountl(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull)
return __builtin_popcountll(__x);
else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
unsigned long long __high = __x >> _Nd_ull;
return __builtin_popcountll(__low) + __builtin_popcountll(__high);
}
}
template <typename _Tp> constexpr bool __has_single_bit(_Tp __x) noexcept {
return __popcount(__x) == 1;
}
template <typename _Tp> constexpr _Tp __bit_ceil(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0 || __x == 1) return 1;
auto __shift_exponent = _Nd - __countl_zero((_Tp)(__x - 1u));
#ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED
if (!__builtin_is_constant_evaluated()) {
__glibcxx_assert(__shift_exponent != numeric_limits<_Tp>::digits);
}
#endif
using __promoted_type = decltype(__x << 1);
if _GLIBCXX17_CONSTEXPR (!is_same<__promoted_type, _Tp>::value) {
const int __extra_exp = sizeof(__promoted_type) / sizeof(_Tp) / 2;
__shift_exponent |= (__shift_exponent & _Nd) << __extra_exp;
}
return (_Tp)1u << __shift_exponent;
}
template <typename _Tp> constexpr _Tp __bit_floor(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return 0;
return (_Tp)1u << (_Nd - __countl_zero((_Tp)(__x >> 1)));
}
template <typename _Tp> constexpr _Tp __bit_width(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
return _Nd - __countl_zero(__x);
}
} // namespace std
#endif
#endif
#line 15 "Library/lib/alias"
namespace workspace {
constexpr char eol = '\n';
using namespace std;
using i32 = int_least32_t;
using u32 = uint_least32_t;
using i64 = int_least64_t;
using u64 = uint_least64_t;
#ifdef __SIZEOF_INT128__
using i128 = __int128_t;
using u128 = __uint128_t;
#else
#warning 128bit integer is not available.
#endif
template <class T, class Comp = less<T>>
using priority_queue = std::priority_queue<T, vector<T>, Comp>;
template <class T> using stack = std::stack<T, vector<T>>;
template <typename _Tp> constexpr _Tp __bsf(_Tp __x) noexcept {
return std::__countr_zero(__x);
}
template <typename _Tp> constexpr _Tp __bsr(_Tp __x) noexcept {
return std::__bit_width(__x) - 1;
}
} // namespace workspace
#line 6 "atcoder-workspace/17.cc"
// #include "lib/cxx20"
#line 2 "Library/lib/direct"
/*
* @file direct
* @brief Pragma Directive
*/
#ifdef ONLINE_JUDGE
#pragma GCC optimize("O3")
#pragma GCC target("avx,avx2")
#pragma GCC optimize("unroll-loops")
#endif
#line 2 "Library/src/opt/binary_search.hpp"
/*
* @file binary_search.hpp
* @brief Binary Search
*/
#line 12 "Library/src/opt/binary_search.hpp"
namespace workspace {
/*
* @fn binary_search
* @brief binary search on a discrete range.
* @param ok pred(ok) is true
* @param ng pred(ng) is false
* @param pred the predicate
* @return the closest point to (ng) where pred is true
*/
template <class Iter, class Pred>
typename std::enable_if<
std::is_convertible<decltype(std::declval<Pred>()(std::declval<Iter>())),
bool>::value,
Iter>::type
binary_search(Iter ok, Iter ng, Pred pred) {
assert(ok != ng);
typename std::make_signed<decltype(ng - ok)>::type dist(ng - ok);
while (1 < dist || dist < -1) {
const Iter mid(ok + dist / 2);
if (pred(mid))
ok = mid, dist -= dist / 2;
else
ng = mid, dist /= 2;
}
return ok;
}
/*
* @fn binary_search
* @brief binary search on the real number line.
* @param ok pred(ok) is true
* @param ng pred(ng) is false
* @param eps the error tolerance
* @param pred the predicate
* @return the boundary point
*/
template <class Real, class Pred>
typename std::enable_if<
std::is_convertible<decltype(std::declval<Pred>()(std::declval<Real>())),
bool>::value,
Real>::type
binary_search(Real ok, Real ng, const Real eps, Pred pred) {
assert(ok != ng);
for (auto loops = 0; loops != std::numeric_limits<Real>::digits &&
(ok + eps < ng || ng + eps < ok);
++loops) {
const Real mid{(ok + ng) / 2};
(pred(mid) ? ok : ng) = mid;
}
return ok;
}
/*
* @fn parallel_binary_search
* @brief parallel binary search on discrete ranges.
* @param ends a vector of pairs; pred(first) is true, pred(second) is false
* @param pred the predicate
* @return the closest points to (second) where pred is true
*/
template <class Array,
class Iter = typename std::decay<
decltype(std::get<0>(std::declval<Array>()[0]))>::type,
class Pred>
typename std::enable_if<
std::is_convertible<
decltype(std::declval<Pred>()(std::declval<std::vector<Iter>>())[0]),
bool>::value,
std::vector<Iter>>::type
parallel_binary_search(Array ends, Pred pred) {
std::vector<Iter> mids(std::size(ends));
for (;;) {
bool all_found = true;
for (size_t i{}; i != std::size(ends); ++i) {
const Iter &ok = std::get<0>(ends[i]);
const Iter &ng = std::get<1>(ends[i]);
const Iter mid(
ok + typename std::make_signed<decltype(ng - ok)>::type(ng - ok) / 2);
if (mids[i] != mid) {
all_found = false;
mids[i] = mid;
}
}
if (all_found) break;
const auto res = pred(mids);
for (size_t i{}; i != std::size(ends); ++i) {
(res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i];
}
}
return mids;
}
/*
* @fn parallel_binary_search
* @brief parallel binary search on the real number line.
* @param ends a vector of pairs; pred(first) is true, pred(second) is false
* @param eps the error tolerance
* @param pred the predicate
* @return the boundary points
*/
template <class Array,
class Real = typename std::decay<
decltype(std::get<0>(std::declval<Array>()[0]))>::type,
class Pred>
typename std::enable_if<
std::is_convertible<
decltype(std::declval<Pred>()(std::declval<std::vector<Real>>())[0]),
bool>::value,
std::vector<Real>>::type
parallel_binary_search(Array ends, const Real eps, Pred pred) {
std::vector<Real> mids(std::size(ends));
for (auto loops = 0; loops != std::numeric_limits<Real>::digits; ++loops) {
bool all_found = true;
for (size_t i{}; i != std::size(ends); ++i) {
const Real ok = std::get<0>(ends[i]);
const Real ng = std::get<1>(ends[i]);
if (ok + eps < ng || ng + eps < ok) {
all_found = false;
mids[i] = (ok + ng) / 2;
}
}
if (all_found) break;
const auto res = pred(mids);
for (size_t i{}; i != std::size(ends); ++i) {
(res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i];
}
}
return mids;
}
} // namespace workspace
#line 2 "Library/src/opt/exponential_search.hpp"
/*
* @file exponential_search.hpp
* @brief Exponential Search
*/
#line 9 "Library/src/opt/exponential_search.hpp"
namespace workspace {
/*
* @fn exponential_search
* @brief Exponential search on a discrete range.
* @param range Range of search, exclusive
* @param pred Predicate
* @return Minimum non-negative integer where pred is false.
*/
template <class Index, class Pred>
typename std::enable_if<
std::is_convertible<decltype(std::declval<Pred>()(std::declval<Index>())),
bool>::value,
Index>::type
exponential_search(Index range, Pred pred) {
Index step(1);
while (step < range && pred(step)) step <<= 1;
if (range < step) step = range;
return binary_search(Index(0), step, pred);
}
/*
* @fn exponential_search
* @brief Exponential search on the real number line.
* @param range Range of search
* @param eps Error tolerance
* @param pred Predicate
* @return Boundary point.
*/
template <class Real, class Pred>
typename std::enable_if<
std::is_convertible<decltype(std::declval<Pred>()(std::declval<Real>())),
bool>::value,
Real>::type
exponential_search(Real range, Real const &eps, Pred pred) {
Real step(1);
while (step < range && pred(step)) step += step;
if (range < step) step = range;
return binary_search(Real(0), step, eps, pred);
}
} // namespace workspace
#line 2 "Library/src/opt/trinary_search.hpp"
/*
* @file trinary_search.hpp
* @brief Trinary Search
*/
#line 9 "Library/src/opt/trinary_search.hpp"
#include <type_traits>
namespace workspace {
/*
* @brief Trinary search on discrete range.
* @param first Left end, inclusive
* @param last Right end, exclusive
* @param comp Compare function
* @return Local minimal point.
*/
template <class Iter, class Comp>
typename std::enable_if<
std::is_convertible<decltype(std::declval<Comp>()(std::declval<Iter>(),
std::declval<Iter>())),
bool>::value,
Iter>::type
trinary_search(Iter first, Iter last, Comp comp) {
assert(first < last);
typename std::make_signed<decltype(last - first)>::type dist(last - first);
while (2 < dist) {
Iter left(first + dist / 3), right(first + dist * 2 / 3);
if (comp(left, right))
last = right, dist = (dist + dist) / 3;
else
first = left, dist -= dist / 3;
}
if (1 < dist && comp(first + 1, first)) ++first;
return first;
}
/*
* @brief Trinary search on discrete range.
* @param first Left end, inclusive
* @param last Right end, exclusive
* @param func Function
* @return Local minimal point.
*/
template <class Iter, class Func>
typename std::enable_if<
std::is_same<decltype(std::declval<Func>()(std::declval<Iter>()), nullptr),
std::nullptr_t>::value,
Iter>::type
trinary_search(Iter const &first, Iter const &last, Func func) {
return trinary_search(first, last, [&](Iter const &__i, Iter const &__j) {
return func(__i) < func(__j);
});
}
/*
* @brief Trinary search on the real number line.
* @param first Left end
* @param last Right end
* @param eps Error tolerance
* @param comp Compare function
* @return Local minimal point.
*/
template <class Real, class Comp>
typename std::enable_if<
std::is_convertible<decltype(std::declval<Comp>()(std::declval<Real>(),
std::declval<Real>())),
bool>::value,
Real>::type
trinary_search(Real first, Real last, Real const &eps, Comp comp) {
assert(first < last);
while (eps < last - first) {
Real left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};
if (comp(left, right))
last = right;
else
first = left;
}
return first;
}
/*
* @brief Trinary search on the real number line.
* @param first Left end
* @param last Right end
* @param eps Error tolerance
* @param func Function
* @return Local minimal point.
*/
template <class Real, class Func>
typename std::enable_if<
std::is_same<decltype(std::declval<Func>()(std::declval<Real>()), nullptr),
std::nullptr_t>::value,
Real>::type
trinary_search(Real const &first, Real const &last, Real const &eps,
Func func) {
return trinary_search(
first, last, eps,
[&](Real const &__i, Real const &__j) { return func(__i) < func(__j); });
}
} // namespace workspace
#line 2 "Library/src/sys/clock.hpp"
/*
* @fn clock.hpp
* @brief Clock
*/
#line 9 "Library/src/sys/clock.hpp"
namespace workspace {
using namespace std::chrono;
namespace internal {
// The start time of the program.
const auto start_time{system_clock::now()};
} // namespace internal
/*
* @fn elapsed
* @return elapsed time of the program
*/
int64_t elapsed() {
const auto end_time{system_clock::now()};
return duration_cast<milliseconds>(end_time - internal::start_time).count();
}
} // namespace workspace
#line 2 "Library/src/sys/ejection.hpp"
/**
* @file ejection.hpp
* @brief Ejection
*/
#line 9 "Library/src/sys/ejection.hpp"
namespace workspace {
namespace internal {
struct ejection {
bool exit = 0;
};
} // namespace internal
/**
* @brief eject from a try block, throw nullptr
* @param arg output
*/
template <class Tp> void eject(Tp const &arg) {
std::cout << arg << "\n";
throw internal::ejection{};
}
void exit() { throw internal::ejection{true}; }
} // namespace workspace
#line 2 "Library/src/sys/iteration.hpp"
/**
* @file iteration.hpp
* @brief Case Iteration
*/
#line 9 "Library/src/sys/iteration.hpp"
#line 11 "Library/src/sys/iteration.hpp"
namespace workspace {
void main();
struct {
// 1-indexed
unsigned current{0};
unsigned total{1};
void read() { (std::cin >> total).ignore(); }
int iterate() {
static bool once = false;
assert(!once);
once = true;
while (current++ < total) {
try {
main();
} catch (internal::ejection const& status) {
if (status.exit) break;
}
}
return 0;
}
} case_info;
} // namespace workspace
#line 2 "Library/src/utils/cat.hpp"
/**
* @file cat.hpp
* @brief Cat
*/
#line 9 "Library/src/utils/cat.hpp"
namespace workspace {
template <class C1, class C2>
constexpr C1 &&cat(C1 &&__c1, C2 const &__c2) noexcept {
__c1.insert(__c1.end(), std::begin(__c2), std::end(__c2));
return __c1;
}
} // namespace workspace
#line 2 "Library/src/utils/chval.hpp"
/*
* @file chval.hpp
* @brief Change Less/Greater
*/
#line 9 "Library/src/utils/chval.hpp"
namespace workspace {
/*
* @fn chle
* @brief Substitute y for x if comp(y, x) is true.
* @param x Reference
* @param y Const reference
* @param comp Compare function
* @return Whether or not x is updated
*/
template <class Tp, class Comp = std::less<Tp>>
bool chle(Tp &x, const Tp &y, Comp comp = Comp()) {
return comp(y, x) ? x = y, true : false;
}
/*
* @fn chge
* @brief Substitute y for x if comp(x, y) is true.
* @param x Reference
* @param y Const reference
* @param comp Compare function
* @return Whether or not x is updated
*/
template <class Tp, class Comp = std::less<Tp>>
bool chge(Tp &x, const Tp &y, Comp comp = Comp()) {
return comp(x, y) ? x = y, true : false;
}
} // namespace workspace
#line 2 "Library/src/utils/fixed_point.hpp"
/*
* @file fixed_point.hpp
* @brief Fixed Point Combinator
*/
#line 9 "Library/src/utils/fixed_point.hpp"
namespace workspace {
/*
* @class fixed_point
* @brief Recursive calling of lambda expression.
*/
template <class lambda_type> class fixed_point {
lambda_type func;
public:
/*
* @param func 1st arg callable with the rest of args, and the return type
* specified.
*/
fixed_point(lambda_type &&func) : func(std::move(func)) {}
/*
* @brief Recursively apply *this to 1st arg of func.
* @param args Arguments of the recursive method.
*/
template <class... Args> auto operator()(Args &&... args) const {
return func(*this, std::forward<Args>(args)...);
}
};
} // namespace workspace
#line 2 "Library/src/utils/grid.hpp"
/**
* @file grid.hpp
* @brief Grid
* @date 2021-01-09
*/
#line 10 "Library/src/utils/grid.hpp"
namespace workspace {
template <class Grid> Grid transpose(Grid const &grid) {
Grid __t;
for (auto &&__r : grid) {
auto __i = std::begin(__t);
for (auto &&__x : __r) {
if (__i == std::end(__t))
__i = __t.insert(__t.end(), typename std::decay<decltype(__r)>::type{});
__i->insert(__i->end(), __x);
++__i;
}
}
return __t;
}
// template <class _Tp, size_t _Row, size_t _Col>
// std::array<std::array<_Tp, _Row>, _Col> transpose(_Tp (&__g)[_Row][_Col]) {}
template <class Grid> Grid roll_ccw(Grid const &grid) {
auto __t = transpose(grid);
std::reverse(std::begin(__t), std::end(__t));
return __t;
}
template <class Grid> Grid roll_cw(Grid const &grid) {
auto __t = grid;
std::reverse(std::begin(__t), std::end(__t));
return transpose(__t);
}
} // namespace workspace
#line 2 "Library/src/utils/hash.hpp"
#line 8 "Library/src/utils/hash.hpp"
#line 2 "Library/src/utils/sfinae.hpp"
/**
* @file sfinae.hpp
* @brief SFINAE
*/
#line 11 "Library/src/utils/sfinae.hpp"
#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif
namespace std {
#if __INT128_DEFINED__
template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };
template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };
#endif
} // namespace std
namespace workspace {
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
template <class Container>
using element_type = typename std::decay<decltype(
*std::begin(std::declval<Container&>()))>::type;
template <class T, class = std::nullptr_t>
struct has_begin : std::false_type {};
template <class T>
struct has_begin<T, decltype(std::begin(std::declval<T>()), nullptr)>
: std::true_type {};
template <class T, class = int> struct mapped_of {
using type = element_type<T>;
};
template <class T>
struct mapped_of<T,
typename std::pair<int, typename T::mapped_type>::first_type> {
using type = typename T::mapped_type;
};
template <class T> using mapped_type = typename mapped_of<T>::type;
template <class T, class = void> struct is_integral_ext : std::false_type {};
template <class T>
struct is_integral_ext<
T, typename std::enable_if<std::is_integral<T>::value>::type>
: std::true_type {};
#if __INT128_DEFINED__
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#endif
#if __cplusplus >= 201402
template <class T>
constexpr static bool is_integral_ext_v = is_integral_ext<T>::value;
#endif
template <typename T, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename T>
struct multiplicable_uint<
T, typename std::enable_if<(2 < sizeof(T)) &&
(!__INT128_DEFINED__ || sizeof(T) <= 4)>::type> {
using type = uint_least64_t;
};
#if __INT128_DEFINED__
template <typename T>
struct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {
using type = __uint128_t;
};
#endif
template <typename T> struct multiplicable_int {
using type =
typename std::make_signed<typename multiplicable_uint<T>::type>::type;
};
} // namespace workspace
#line 10 "Library/src/utils/hash.hpp"
namespace workspace {
template <class T, class = void> struct hash : std::hash<T> {};
#if __cplusplus >= 201703L
template <class Unique_bits_type>
struct hash<Unique_bits_type,
enable_if_trait_type<Unique_bits_type,
std::has_unique_object_representations>> {
size_t operator()(uint64_t x) const {
static const uint64_t m = std::random_device{}();
x ^= x >> 23;
x ^= m;
x ^= x >> 47;
return x - (x >> 32);
}
};
#endif
template <class Key> size_t hash_combine(const size_t &seed, const Key &key) {
return seed ^
(hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);
}
template <class T1, class T2> struct hash<std::pair<T1, T2>> {
size_t operator()(const std::pair<T1, T2> &pair) const {
return hash_combine(hash<T1>()(pair.first), pair.second);
}
};
template <class... T> class hash<std::tuple<T...>> {
template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>
struct tuple_hash {
static uint64_t apply(const Tuple &t) {
return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),
std::get<index>(t));
}
};
template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {
static uint64_t apply(const Tuple &t) { return 0; }
};
public:
uint64_t operator()(const std::tuple<T...> &t) const {
return tuple_hash<std::tuple<T...>>::apply(t);
}
};
template <class hash_table> struct hash_table_wrapper : hash_table {
using key_type = typename hash_table::key_type;
size_t count(const key_type &key) const {
return hash_table::find(key) != hash_table::end();
}
template <class... Args> auto emplace(Args &&... args) {
return hash_table::insert(typename hash_table::value_type(args...));
}
};
template <class Key, class Mapped = __gnu_pbds::null_type>
using cc_hash_table =
hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;
template <class Key, class Mapped = __gnu_pbds::null_type>
using gp_hash_table =
hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;
template <class Key, class Mapped>
using unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;
template <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;
} // namespace workspace
#line 2 "Library/src/utils/io/istream.hpp"
/**
* @file istream.hpp
* @brief Input Stream
*/
#include <cxxabi.h>
#line 13 "Library/src/utils/io/istream.hpp"
#line 15 "Library/src/utils/io/istream.hpp"
namespace workspace {
namespace internal {
template <class Tp, typename = std::nullptr_t> struct istream_helper {
istream_helper(std::istream &is, Tp &x) {
if constexpr (has_begin<Tp>::value)
for (auto &&e : x)
istream_helper<typename std::decay<decltype(e)>::type>(is, e);
else
static_assert(has_begin<Tp>::value, "istream unsupported type.");
}
};
template <class Tp>
struct istream_helper<
Tp,
decltype(std::declval<std::decay<decltype(std::declval<std::istream &>() >>
std::declval<Tp &>())>>(),
nullptr)> {
istream_helper(std::istream &is, Tp &x) { is >> x; }
};
#ifdef __SIZEOF_INT128__
template <> struct istream_helper<__int128_t, std::nullptr_t> {
istream_helper(std::istream &is, __int128_t &x) {
std::string s;
is >> s;
bool negative = s.front() == '-' ? s.erase(s.begin()), true : false;
x = 0;
for (char e : s) x = x * 10 + e - '0';
if (negative) x = -x;
}
};
template <> struct istream_helper<__uint128_t, std::nullptr_t> {
istream_helper(std::istream &is, __uint128_t &x) {
std::string s;
is >> s;
bool negative = s.front() == '-' ? s.erase(s.begin()), true : false;
x = 0;
for (char e : s) x = x * 10 + e - '0';
if (negative) x = -x;
}
};
#endif // INT128
template <class T1, class T2> struct istream_helper<std::pair<T1, T2>> {
istream_helper(std::istream &is, std::pair<T1, T2> &x) {
istream_helper<T1>(is, x.first), istream_helper<T2>(is, x.second);
}
};
template <class... Tps> struct istream_helper<std::tuple<Tps...>> {
istream_helper(std::istream &is, std::tuple<Tps...> &x) { iterate(is, x); }
private:
template <class Tp, size_t N = 0> void iterate(std::istream &is, Tp &x) {
if constexpr (N == std::tuple_size<Tp>::value)
return;
else
istream_helper<typename std::tuple_element<N, Tp>::type>(is,
std::get<N>(x)),
iterate<Tp, N + 1>(is, x);
}
};
} // namespace internal
/**
* @brief A wrapper class for std::istream.
*/
class istream : public std::istream {
public:
/**
* @brief Wrapped operator.
*/
template <typename Tp> istream &operator>>(Tp &x) {
internal::istream_helper<Tp>(*this, x);
if (std::istream::fail()) {
static auto once = atexit([] {
std::cerr << "\n\033[43m\033[30mwarning: failed to read \'"
<< abi::__cxa_demangle(typeid(Tp).name(), 0, 0, 0)
<< "\'.\033[0m\n\n";
});
assert(!once);
}
return *this;
}
};
namespace internal {
auto *const cin_ptr = (istream *)&std::cin;
}
auto &cin = *internal::cin_ptr;
} // namespace workspace
#line 2 "Library/src/utils/io/ostream.hpp"
/*
* @file ostream.hpp
* @brief Output Stream
*/
#line 10 "Library/src/utils/io/ostream.hpp"
namespace workspace {
template <class T, class U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {
return os << p.first << ' ' << p.second;
}
template <class tuple_t, size_t index> struct tuple_os {
static std::ostream &apply(std::ostream &os, const tuple_t &t) {
tuple_os<tuple_t, index - 1>::apply(os, t);
return os << ' ' << std::get<index>(t);
}
};
template <class tuple_t> struct tuple_os<tuple_t, 0> {
static std::ostream &apply(std::ostream &os, const tuple_t &t) {
return os << std::get<0>(t);
}
};
template <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {
static std::ostream &apply(std::ostream &os, const tuple_t &t) { return os; }
};
template <class... T>
std::ostream &operator<<(std::ostream &os, const std::tuple<T...> &t) {
return tuple_os<std::tuple<T...>,
std::tuple_size<std::tuple<T...>>::value - 1>::apply(os, t);
}
template <class Container,
typename = decltype(std::begin(std::declval<Container>()))>
typename std::enable_if<
!std::is_same<typename std::decay<Container>::type, std::string>::value &&
!std::is_same<typename std::decay<Container>::type, char *>::value,
std::ostream &>::type
operator<<(std::ostream &os, const Container &cont) {
bool head = true;
for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;
return os;
}
} // namespace workspace
#line 9 "Library/lib/utils"
// #include "src/utils/io/read.hpp"
#line 2 "Library/src/utils/io/setup.hpp"
/*
* @file setup.hpp
* @brief I/O Setup
*/
#line 10 "Library/src/utils/io/setup.hpp"
namespace workspace {
/*
* @fn io_setup
* @brief Setup I/O.
* @param precision Standard output precision
*/
void io_setup(int precision) {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(precision);
#ifdef _buffer_check
atexit([] {
char bufc;
if (std::cin >> bufc)
std::cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n";
});
#endif
}
} // namespace workspace
#line 2 "Library/src/utils/iterator/category.hpp"
/*
* @file category.hpp
* @brief Iterator Category
*/
#line 10 "Library/src/utils/iterator/category.hpp"
namespace workspace {
/*
* @tparam Tuple Tuple of iterator types
*/
template <class Tuple, size_t N = std::tuple_size<Tuple>::value - 1>
struct common_iterator_category {
using type = typename std::common_type<
typename common_iterator_category<Tuple, N - 1>::type,
typename std::iterator_traits<typename std::tuple_element<
N, Tuple>::type>::iterator_category>::type;
};
template <class Tuple> struct common_iterator_category<Tuple, 0> {
using type = typename std::iterator_traits<
typename std::tuple_element<0, Tuple>::type>::iterator_category;
};
} // namespace workspace
#line 2 "Library/src/utils/iterator/reverse.hpp"
/*
* @file reverse_iterator.hpp
* @brief Reverse Iterator
*/
#if __cplusplus >= 201703L
#include <iterator>
#include <optional>
namespace workspace {
/*
* @class reverse_iterator
* @brief Wrapper class for `std::reverse_iterator`.
* @see http://gcc.gnu.org/PR51823
*/
template <class Iterator>
class reverse_iterator : public std::reverse_iterator<Iterator> {
using base_std = std::reverse_iterator<Iterator>;
std::optional<typename base_std::value_type> deref;
public:
using base_std::reverse_iterator;
constexpr typename base_std::reference operator*() noexcept {
if (!deref) {
Iterator tmp = base_std::current;
deref = *--tmp;
}
return deref.value();
}
constexpr reverse_iterator &operator++() noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator &operator--() noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator operator++(int) noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator operator--(int) noexcept {
base_std::operator++();
deref.reset();
return *this;
}
};
} // namespace workspace
#endif
#line 2 "Library/src/utils/make_vector.hpp"
/*
* @file make_vector.hpp
* @brief Multi-dimensional Vector
*/
#if __cplusplus >= 201703L
#include <tuple>
#include <vector>
namespace workspace {
/*
* @brief Make a multi-dimensional vector.
* @tparam Tp type of the elements
* @tparam N dimension
* @tparam S integer type
* @param sizes The size of each dimension
* @param init The initial value
*/
template <typename Tp, size_t N, typename S>
constexpr auto make_vector([[maybe_unused]] S* sizes, Tp const& init = Tp()) {
static_assert(std::is_convertible_v<S, size_t>);
if constexpr (N)
return std::vector(*sizes,
make_vector<Tp, N - 1, S>(std::next(sizes), init));
else
return init;
}
/*
* @brief Make a multi-dimensional vector.
* @param sizes The size of each dimension
* @param init The initial value
*/
template <typename Tp, size_t N, typename S>
constexpr auto make_vector(const S (&sizes)[N], Tp const& init = Tp()) {
return make_vector<Tp, N, S>((S*)sizes, init);
}
/*
* @brief Make a multi-dimensional vector.
* @param sizes The size of each dimension
* @param init The initial value
*/
template <typename Tp, size_t N, typename S, size_t I = 0>
constexpr auto make_vector([[maybe_unused]] std::array<S, N> const& sizes,
Tp const& init = Tp()) {
static_assert(std::is_convertible_v<S, size_t>);
if constexpr (I == N)
return init;
else
return std::vector(sizes[I], make_vector<Tp, N, S, I + 1>(sizes, init));
}
/*
* @brief Make a multi-dimensional vector.
* @param sizes The size of each dimension
* @param init The initial value
*/
template <typename Tp, size_t N = SIZE_MAX, size_t I = 0, class... Args>
constexpr auto make_vector([[maybe_unused]] std::tuple<Args...> const& sizes,
Tp const& init = Tp()) {
using tuple_type = std::tuple<Args...>;
if constexpr (I == std::tuple_size_v<tuple_type> || I == N)
return init;
else {
static_assert(
std::is_convertible_v<std::tuple_element_t<I, tuple_type>, size_t>);
return std::vector(std::get<I>(sizes),
make_vector<Tp, N, I + 1>(sizes, init));
}
}
/*
* @brief Make a multi-dimensional vector.
* @param sizes The size of each dimension
* @param init The initial value
*/
template <typename Tp, class Fst, class Snd>
constexpr auto make_vector(std::pair<Fst, Snd> const& sizes,
Tp const& init = Tp()) {
static_assert(std::is_convertible_v<Fst, size_t>);
static_assert(std::is_convertible_v<Snd, size_t>);
return make_vector({(size_t)sizes.first, (size_t)sizes.second}, init);
}
} // namespace workspace
#endif
#line 2 "Library/src/utils/py-like/enumerate.hpp"
/*
* @file enumerate.hpp
* @brief Enumerate
*/
#line 2 "Library/src/utils/py-like/range.hpp"
/**
* @file range.hpp
* @brief Range
*/
#line 9 "Library/src/utils/py-like/range.hpp"
#line 2 "Library/src/utils/py-like/reversed.hpp"
/**
* @file reversed.hpp
* @brief Reversed
*/
#include <initializer_list>
#line 10 "Library/src/utils/py-like/reversed.hpp"
namespace workspace {
namespace internal {
template <class Container> class reversed {
Container cont;
public:
constexpr reversed(Container &&cont) : cont(cont) {}
constexpr auto begin() { return std::rbegin(cont); }
constexpr auto end() { return std::rend(cont); }
};
} // namespace internal
template <class Container> constexpr auto reversed(Container &&cont) noexcept {
return internal::reversed<Container>{std::forward<Container>(cont)};
}
template <class Tp>
constexpr auto reversed(std::initializer_list<Tp> &&cont) noexcept {
return internal::reversed<std::initializer_list<Tp>>{
std::forward<std::initializer_list<Tp>>(cont)};
}
} // namespace workspace
#line 12 "Library/src/utils/py-like/range.hpp"
#if __cplusplus >= 201703L
namespace workspace {
template <class Index> class range {
Index first, last;
public:
class iterator {
Index current;
public:
using difference_type = std::ptrdiff_t;
using value_type = Index;
using reference = typename std::add_const<Index>::type &;
using pointer = iterator;
using iterator_category = std::bidirectional_iterator_tag;
constexpr iterator(Index const &__i = Index()) noexcept : current(__i) {}
constexpr bool operator==(iterator const &rhs) const noexcept {
return current == rhs.current;
}
constexpr bool operator!=(iterator const &rhs) const noexcept {
return current != rhs.current;
}
constexpr iterator &operator++() noexcept {
++current;
return *this;
}
constexpr iterator &operator--() noexcept {
--current;
return *this;
}
constexpr reference operator*() const noexcept { return current; }
};
constexpr range(Index first, Index last) noexcept
: first(first), last(last) {}
constexpr range(Index last) noexcept : first(), last(last) {}
constexpr iterator begin() const noexcept { return iterator{first}; }
constexpr iterator end() const noexcept { return iterator{last}; }
constexpr reverse_iterator<iterator> rbegin() const noexcept {
return reverse_iterator<iterator>(end());
}
constexpr reverse_iterator<iterator> rend() const noexcept {
return reverse_iterator<iterator>(begin());
}
};
template <class... Args> constexpr auto rrange(Args &&... args) noexcept {
return internal::reversed(range(std::forward<Args>(args)...));
}
} // namespace workspace
#endif
#line 2 "Library/src/utils/py-like/zip.hpp"
/**
* @file zip.hpp
* @brief Zip
*/
#line 11 "Library/src/utils/py-like/zip.hpp"
#line 14 "Library/src/utils/py-like/zip.hpp"
#if __cplusplus >= 201703L
namespace workspace {
namespace internal {
template <class> struct zipped_iterator;
template <class...> struct zipped_iterator_tuple;
template <class... Args> class zipped {
using ref_tuple = std::tuple<Args...>;
ref_tuple args;
template <size_t N = 0> constexpr auto begin_cat() const noexcept {
if constexpr (N != std::tuple_size<ref_tuple>::value) {
return std::tuple_cat(std::tuple(std::begin(std::get<N>(args))),
begin_cat<N + 1>());
} else
return std::tuple<>();
}
template <size_t N = 0> constexpr auto end_cat() const noexcept {
if constexpr (N != std::tuple_size<ref_tuple>::value) {
return std::tuple_cat(std::tuple(std::end(std::get<N>(args))),
end_cat<N + 1>());
} else
return std::tuple<>();
}
public:
constexpr zipped(Args &&... args) noexcept : args(args...) {}
class iterator {
using base_tuple = typename zipped_iterator_tuple<Args...>::type;
public:
using iterator_category =
typename common_iterator_category<base_tuple>::type;
using difference_type = std::ptrdiff_t;
using value_type = zipped_iterator<base_tuple>;
using reference = zipped_iterator<base_tuple> &;
using pointer = iterator;
protected:
value_type current;
template <size_t N = 0>
constexpr bool equal(const iterator &rhs) const noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
return std::get<N>(current) == std::get<N>(rhs.current) ||
equal<N + 1>(rhs);
} else
return false;
}
template <size_t N = 0> constexpr void increment() noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
++std::get<N>(current);
increment<N + 1>();
}
}
template <size_t N = 0> constexpr void decrement() noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
--std::get<N>(current);
decrement<N + 1>();
}
}
template <size_t N = 0>
constexpr void advance(difference_type __d) noexcept {
if constexpr (N != std::tuple_size<base_tuple>::value) {
std::get<N>(current) += __d;
advance<N + 1>(__d);
}
}
public:
constexpr iterator() noexcept = default;
constexpr iterator(base_tuple const ¤t) noexcept : current(current) {}
constexpr bool operator==(const iterator &rhs) const noexcept {
return equal(rhs);
}
constexpr bool operator!=(const iterator &rhs) const noexcept {
return !equal(rhs);
}
constexpr iterator &operator++() noexcept {
increment();
return *this;
}
constexpr iterator &operator--() noexcept {
decrement();
return *this;
}
constexpr bool operator<(const iterator &rhs) const noexcept {
return std::get<0>(current) < std::get<0>(rhs.current);
}
constexpr bool operator<=(const iterator &rhs) const noexcept {
return std::get<0>(current) <= std::get<0>(rhs.current);
}
constexpr iterator &operator+=(difference_type __d) noexcept {
advance(__d);
return *this;
}
constexpr iterator &operator-=(difference_type __d) noexcept {
advance(-__d);
return *this;
}
constexpr iterator operator+(difference_type __d) const noexcept {
return iterator{*this} += __d;
}
constexpr iterator operator-(difference_type __d) const noexcept {
return iterator{*this} -= __d;
}
constexpr difference_type operator-(const iterator &rhs) const noexcept {
return std::get<0>(current) - std::get<0>(rhs.current);
}
constexpr reference operator*() noexcept { return current; }
};
constexpr iterator begin() const noexcept { return iterator{begin_cat()}; }
constexpr iterator end() const noexcept { return iterator{end_cat()}; }
constexpr reverse_iterator<iterator> rbegin() const noexcept {
return reverse_iterator<iterator>{end()};
}
constexpr reverse_iterator<iterator> rend() const noexcept {
return reverse_iterator<iterator>{begin()};
}
};
template <class Tp, class... Args> struct zipped_iterator_tuple<Tp, Args...> {
using type = decltype(std::tuple_cat(
std::declval<std::tuple<decltype(std::begin(std::declval<Tp>()))>>(),
std::declval<typename zipped_iterator_tuple<Args...>::type>()));
};
template <> struct zipped_iterator_tuple<> { using type = std::tuple<>; };
template <class Iter_tuple> struct zipped_iterator : Iter_tuple {
constexpr zipped_iterator(Iter_tuple const &__t) noexcept
: Iter_tuple::tuple(__t) {}
constexpr zipped_iterator(zipped_iterator const &__t) = default;
constexpr zipped_iterator &operator=(zipped_iterator const &__t) = default;
// Avoid move initialization.
constexpr zipped_iterator(zipped_iterator &&__t)
: zipped_iterator(static_cast<zipped_iterator const &>(__t)) {}
// Avoid move assignment.
zipped_iterator &operator=(zipped_iterator &&__t) {
return operator=(static_cast<zipped_iterator const &>(__t));
}
template <size_t N>
friend constexpr auto &get(zipped_iterator<Iter_tuple> const &__z) noexcept {
return *std::get<N>(__z);
}
template <size_t N>
friend constexpr auto get(zipped_iterator<Iter_tuple> &&__z) noexcept {
return *std::get<N>(__z);
}
};
} // namespace internal
} // namespace workspace
namespace std {
template <size_t N, class Iter_tuple>
struct tuple_element<N, workspace::internal::zipped_iterator<Iter_tuple>> {
using type = typename remove_reference<typename iterator_traits<
typename tuple_element<N, Iter_tuple>::type>::reference>::type;
};
template <class Iter_tuple>
struct tuple_size<workspace::internal::zipped_iterator<Iter_tuple>>
: tuple_size<Iter_tuple> {};
} // namespace std
namespace workspace {
template <class... Args> constexpr auto zip(Args &&... args) noexcept {
return internal::zipped<Args...>(std::forward<Args>(args)...);
}
template <class... Args>
constexpr auto zip(std::initializer_list<Args> const &... args) noexcept {
return internal::zipped<const std::initializer_list<Args>...>(args...);
}
} // namespace workspace
#endif
#line 10 "Library/src/utils/py-like/enumerate.hpp"
#if __cplusplus >= 201703L
namespace workspace {
constexpr size_t min_size() noexcept { return SIZE_MAX; }
template <class Container, class... Args>
constexpr size_t min_size(Container const &cont, Args &&... args) noexcept {
return std::min(std::size(cont), min_size(std::forward<Args>(args)...));
}
template <class... Args> constexpr auto enumerate(Args &&... args) noexcept {
return zip(range(min_size(args...)), std::forward<Args>(args)...);
}
template <class... Args>
constexpr auto enumerate(std::initializer_list<Args> const &... args) noexcept {
return zip(range(min_size(args...)), std::vector(args)...);
}
} // namespace workspace
#endif
#line 2 "Library/src/utils/rand/rng.hpp"
/**
* @file rng.hpp
* @brief Random Number Generator
*/
#line 9 "Library/src/utils/rand/rng.hpp"
namespace workspace {
template <typename Arithmetic>
using uniform_distribution =
typename std::conditional<std::is_integral<Arithmetic>::value,
std::uniform_int_distribution<Arithmetic>,
std::uniform_real_distribution<Arithmetic>>::type;
template <typename Arithmetic>
class random_number_generator : uniform_distribution<Arithmetic> {
using base = uniform_distribution<Arithmetic>;
std::mt19937 engine;
public:
template <class... Args>
random_number_generator(Args&&... args)
: base(args...), engine(std::random_device{}()) {}
auto operator()() { return base::operator()(engine); }
};
} // namespace workspace
#line 2 "Library/src/utils/rand/shuffle.hpp"
/**
* @file shuffle.hpp
* @brief Shuffle
*/
#line 10 "Library/src/utils/rand/shuffle.hpp"
namespace workspace {
template <class RAIter>
void shuffle(RAIter const& __first, RAIter const& __last) {
static std::mt19937 engine(std::random_device{}());
std::shuffle(__first, __last, engine);
}
} // namespace workspace
#line 2 "Library/src/utils/round_div.hpp"
/*
* @file round_div.hpp
* @brief Round Integer Division
*/
#line 9 "Library/src/utils/round_div.hpp"
#line 11 "Library/src/utils/round_div.hpp"
namespace workspace {
/*
* @fn floor_div
* @brief floor of fraction.
* @param x the numerator
* @param y the denominator
* @return maximum integer z s.t. z <= x / y
* @note y must be nonzero.
*/
template <typename T1, typename T2>
constexpr typename std::enable_if<(is_integral_ext<T1>::value &&
is_integral_ext<T2>::value),
typename std::common_type<T1, T2>::type>::type
floor_div(T1 x, T2 y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return x < 0 ? (x - y + 1) / y : x / y;
}
/*
* @fn ceil_div
* @brief ceil of fraction.
* @param x the numerator
* @param y the denominator
* @return minimum integer z s.t. z >= x / y
* @note y must be nonzero.
*/
template <typename T1, typename T2>
constexpr typename std::enable_if<(is_integral_ext<T1>::value &&
is_integral_ext<T2>::value),
typename std::common_type<T1, T2>::type>::type
ceil_div(T1 x, T2 y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return x < 0 ? x / y : (x + y - 1) / y;
}
} // namespace workspace
#line 11 "atcoder-workspace/17.cc"
signed main() {
using namespace workspace;
io_setup(15);
/* given
case_info.read(); //*/
/* unspecified
case_info.total = -1; //*/
return case_info.iterate();
}
#line 2 "Library/src/data_structure/segment_tree/lazy.hpp"
/*
* @file lazy.hpp
* @brief Lazy Segment Tree
*/
#line 11 "Library/src/data_structure/segment_tree/lazy.hpp"
#line 2 "Library/src/algebra/system/monoid.hpp"
/*
* @file monoid.hpp
* @brief Monoid
*/
#line 9 "Library/src/algebra/system/monoid.hpp"
namespace workspace {
template <class T, class E = T> struct min_monoid {
using value_type = T;
static T min, max;
T value;
min_monoid() : value(max) {}
min_monoid(const T &value) : value(value) {}
operator T() const { return value; }
min_monoid operator+(const min_monoid &rhs) const {
return value < rhs.value ? *this : rhs;
}
min_monoid operator*(const E &rhs) const;
};
template <class T, class E>
T min_monoid<T, E>::min = std::numeric_limits<T>::min() / 2;
template <class T, class E>
T min_monoid<T, E>::max = std::numeric_limits<T>::max() / 2;
template <class T, class E = T> struct max_monoid : min_monoid<T, E> {
using base = min_monoid<T, E>;
using base::min_monoid;
max_monoid() : base(base::min) {}
max_monoid operator+(const max_monoid &rhs) const {
return !(base::value < rhs.value) ? *this : rhs;
}
max_monoid operator*(const E &rhs) const;
};
} // namespace workspace
#line 2 "Library/src/data_structure/segment_tree/waitings.hpp"
#line 5 "Library/src/data_structure/segment_tree/waitings.hpp"
namespace workspace {
namespace internal {
struct waitings : std::queue<size_t> {
waitings(size_t n) : in(n) {}
bool push(size_t index) {
// assert(index < in.size());
if (in[index]) return false;
emplace(index);
return (in[index] = true);
}
size_t pop() {
// assert(!empty());
auto index = front();
std::queue<size_t>::pop();
in[index] = false;
return index;
}
private:
std::vector<int_least8_t> in;
};
} // namespace internal
} // namespace workspace
#line 15 "Library/src/data_structure/segment_tree/lazy.hpp"
namespace workspace {
template <class Monoid, class Endomorphism,
class Monoid_container = std::vector<Monoid>,
class Endomorphism_container = std::vector<Endomorphism>>
class lazy_segment_tree {
static_assert(std::is_same<Monoid, mapped_type<Monoid_container>>::value);
static_assert(
std::is_same<Endomorphism, mapped_type<Endomorphism_container>>::value);
static_assert(std::is_same<Monoid, decltype(std::declval<Monoid>() +
std::declval<Monoid>())>::value,
"\'Monoid\' has no proper binary \'operator+\'.");
static_assert(
std::is_same<Endomorphism, decltype(std::declval<Endomorphism>() *
std::declval<Endomorphism>())>::value,
"\'Endomorphism\' has no proper binary operator*.");
static_assert(
std::is_same<Monoid, decltype(std::declval<Monoid>() *
std::declval<Endomorphism>())>::value,
"\'Endomorphism\' is not applicable to \'Monoid\'.");
size_t size_orig, height, size_ext;
Monoid_container data;
Endomorphism_container lazy;
internal::waitings wait;
void repair() {
while (!wait.empty()) {
const size_t index = wait.pop() >> 1;
if (index && wait.push(index)) pull(index);
}
}
void apply(size_t node, const Endomorphism &endo) {
data[node] = data[node] * endo;
if (node < size_ext) lazy[node] = lazy[node] * endo;
}
void push(size_t node) {
apply(node << 1, lazy[node]);
apply(node << 1 | 1, lazy[node]);
lazy[node] = Endomorphism{};
}
void pull(size_t node) { data[node] = data[node << 1] + data[node << 1 | 1]; }
template <class Pred>
static constexpr decltype(std::declval<Pred>()(Monoid{})) pass_args(
Pred pred, Monoid const &_1, [[maybe_unused]] size_t _2) {
return pred(_1);
}
template <class Pred>
static constexpr decltype(std::declval<Pred>()(Monoid{}, size_t{})) pass_args(
Pred pred, Monoid const &_1, size_t _2) {
return pred(_1, _2);
}
template <class Pred>
size_t left_partition_subtree(size_t node, Monoid mono, size_t step,
Pred pred) {
assert(node);
while (node < size_ext) {
push(node);
const Monoid tmp = data[(node <<= 1) | 1] + mono;
if (pass_args(pred, tmp, ((node | 1) << --step) ^ size_ext))
mono = tmp;
else
++node;
}
return ++node -= size_ext;
}
template <class Pred>
size_t right_partition_subtree(size_t node, Monoid mono, size_t step,
Pred pred) {
assert(node);
while (node < size_ext) {
push(node);
const Monoid tmp = mono + data[node <<= 1];
if (pass_args(pred, tmp, ((node | 1) << --step) ^ size_ext))
++node, mono = tmp;
}
return (node -= size_ext) < size_orig ? node : size_orig;
}
public:
class iterator {
lazy_segment_tree *__p;
size_t __i;
public:
using difference_type = typename std::make_signed<size_t>::type;
using value_type = Monoid;
using reference = Monoid &;
using pointer = iterator;
using iterator_category = std::random_access_iterator_tag;
/**
* @brief Construct a new iterator object
*
*/
iterator() = default;
/**
* @brief Construct a new iterator object
*
* @param __p Pointer to a segment tree object
* @param __i Index
*/
iterator(lazy_segment_tree *__p, size_t __i) : __p(__p), __i(__i) {}
bool operator==(iterator const &rhs) const {
return __p == rhs.__p && __i == rhs.__i;
}
bool operator!=(iterator const &rhs) const { return !operator==(rhs); }
bool operator<(iterator const &rhs) const { return __i < rhs.__i; }
bool operator>(iterator const &rhs) const { return __i > rhs.__i; }
bool operator<=(iterator const &rhs) const { return __i <= rhs.__i; }
bool operator>=(iterator const &rhs) const { return __i >= rhs.__i; }
iterator &operator++() { return ++__i, *this; }
iterator &operator--() { return --__i, *this; }
difference_type operator-(iterator const &rhs) const {
return __i - rhs.__i;
}
/**
* @brief
*
* @return reference
*/
reference operator*() const { return __p->operator[](__i); }
};
using value_type = typename iterator::value_type;
using reference = typename iterator::reference;
iterator begin() { return {this, 0}; }
iterator end() { return {this, size_orig}; }
auto rbegin() { return std::make_reverse_iterator(end()); }
auto rend() { return std::make_reverse_iterator(begin()); }
lazy_segment_tree(size_t n = 0)
: size_orig{n},
height(n > 1 ? 32 - __builtin_clz(n - 1) : 0),
size_ext{1u << height},
data(size_ext << 1),
lazy(size_ext),
wait(size_ext << 1) {}
lazy_segment_tree(size_t n, const Monoid &init) : lazy_segment_tree(n) {
std::fill(std::next(std::begin(data), size_ext), std::end(data), init);
for (size_t i{size_ext}; --i;) pull(i);
}
template <class iter_type, class value_type = typename std::iterator_traits<
iter_type>::value_type>
lazy_segment_tree(iter_type first, iter_type last)
: size_orig(std::distance(first, last)),
height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0),
size_ext{1u << height},
data(size_ext << 1),
lazy(size_ext),
wait(size_ext << 1) {
static_assert(std::is_constructible<Monoid, value_type>::value,
"Monoid(iter_type::value_type) is not constructible.");
for (auto iter{std::next(std::begin(data), size_ext)};
iter != std::end(data) && first != last; ++iter, ++first)
*iter = Monoid(*first);
for (size_t i{size_ext}; --i;) pull(i);
}
template <class Container, typename = element_type<Container>>
lazy_segment_tree(const Container &cont)
: lazy_segment_tree(std::begin(cont), std::end(cont)) {}
/**
* @return Number of elements.
*/
size_t size() const { return size_orig; }
/**
* @param index Index of the element
* @return Reference to the element.
*/
Monoid &operator[](size_t index) {
assert(index < size_orig);
index |= size_ext;
wait.push(index);
for (size_t i = height; i; --i) push(index >> i);
return data[index];
}
void update(const Endomorphism &endo) { update(0, size_orig, endo); }
void update(size_t index, const Endomorphism &endo) {
update(index, index + 1, endo);
}
void update(size_t first, size_t last, const Endomorphism &endo) {
assert(last <= size_orig);
repair();
if (first >= last) return;
first += size_ext, last += size_ext;
--last;
for (size_t i = height; i; --i) push(first >> i), push(last >> i);
++last;
for (size_t l = first, r = last; l != r; l >>= 1, r >>= 1) {
if (l & 1) apply(l++, endo);
if (r & 1) apply(--r, endo);
}
for (first >>= __builtin_ffs(first); first; first >>= 1) pull(first);
for (last >>= __builtin_ffs(last); last; last >>= 1) pull(last);
}
/**
* @param first Left end, inclusive
* @param last Right end, exclusive
* @return Sum of elements in the interval.
*/
Monoid fold(size_t first, size_t last) {
assert(last <= size_orig);
repair();
if (first >= last) return Monoid{};
first += size_ext, last += size_ext - 1;
Monoid left_val{}, right_val{};
for (size_t l = first, r = last + 1; l != r; l >>= 1, r >>= 1) {
if (l & 1) left_val = left_val + data[l++];
if (r & 1) right_val = data[--r] + right_val;
left_val = left_val * lazy[first >>= 1];
right_val = right_val * lazy[last >>= 1];
}
while (first >>= 1, last >>= 1) {
left_val = left_val * lazy[first];
right_val = right_val * lazy[last];
}
return left_val + right_val;
}
/**
* @return Sum of all elements.
*/
Monoid fold() { return fold(0, size_orig); }
/**
* @brief Binary search for the partition point.
* @param right Right fixed end of the interval, exclusive
* @param pred Predicate in the form of either 'bool(Monoid)' or 'bool(Monoid,
* size_t)'
* @return Left end of the extremal interval satisfying the condition,
* inclusive.
*/
template <class Pred> size_t left_partition(size_t right, Pred pred) {
assert(right <= size_orig);
repair();
right += size_ext - 1;
for (size_t i{height}; i; --i) push(right >> i);
++right;
Monoid mono{};
for (size_t left{size_ext}, step{}; left != right;
left >>= 1, right >>= 1, ++step) {
if ((left & 1) != (right & 1)) {
const Monoid tmp = data[--right] + mono;
if (!pass_args(pred, tmp, (right << step) ^ size_ext))
return left_partition_subtree(right, mono, step, pred);
mono = tmp;
}
}
return 0;
}
/**
* @brief Binary search for the partition point.
* @param left Left fixed end of the interval, inclusive
* @param pred Predicate in the form of either 'bool(Monoid)' or 'bool(Monoid,
* size_t)'
* @return Right end of the extremal interval satisfying the condition,
* exclusive.
*/
template <class Pred> size_t right_partition(size_t left, Pred pred) {
assert(left <= size_orig);
repair();
left += size_ext;
for (size_t i{height}; i; --i) push(left >> i);
Monoid mono{};
for (size_t right{size_ext << 1}, step{}; left != right;
left >>= 1, right >>= 1, ++step) {
if ((left & 1) != (right & 1)) {
const Monoid tmp = mono + data[left];
if (!pass_args(pred, tmp, ((left + 1) << step) ^ size_ext))
return right_partition_subtree(left, mono, step, pred);
mono = tmp;
++left;
}
}
return size_orig;
}
};
} // namespace workspace
#line 27 "atcoder-workspace/17.cc"
namespace workspace {
constexpr i64 inf = 4e12;
void main() {
// start here!
int n;
i64 m;
cin >> n >> m;
vector<pair<int, int>> itvs(n);
vector<int> c(n);
for (auto &&[b, p] : zip(c, itvs)) {
auto &[a, c] = p;
cin >> a >> b >> c;
if (a > c) swap(a, c);
}
sort(begin(c), end(c));
sort(begin(itvs), end(itvs)
/* ,[](auto p1, auto p2) { return p1.second < p2.second; }*/
);
i64 sum = 0;
vector<i64> cur(n, -inf);
set<pair<i64, int>> ex;
priority_queue<i64> pq;
{
auto iter = itvs.rbegin();
for (auto &&[i, v] : reversed(enumerate(c))) {
while (iter != rend(itvs) && iter->first > c[i]) {
pq.emplace(iter->second);
++iter;
}
if (!pq.empty()) {
cur[i] = pq.top();
pq.pop();
}
ex.emplace(cur[i], i);
sum += cur[i];
}
while (iter != rend(itvs)) {
pq.emplace(iter->second);
++iter;
}
}
struct endo {
int _v = 0;
endo operator*(endo const &r) const { return {_v + r._v}; }
};
struct mono {
int _v = 1e9;
mono operator+(mono const &r) const { return {min(_v, r._v)}; }
mono operator*(endo const &r) const { return {_v + r._v}; }
};
lazy_segment_tree<mono, endo> lsg(n, {0});
i64 ans = -1;
for (auto k : rrange(n + 1)) {
if (k < n) { // move one
// delete
sum -= cur[k];
ex.erase({cur[k], k});
if (!ex.empty()) {
auto iter = ex.begin();
auto [c, i] = *iter;
if (c < cur[k]) {
ex.erase(iter);
ex.emplace(cur[k], i);
sum -= cur[i];
sum += cur[k];
swap(cur[i], cur[k]);
}
}
// add
sum += c[k];
if (!pq.empty()) {
cur[k] = pq.top();
pq.pop();
}
auto pos = upper_bound(begin(c), end(c), cur[k]) - begin(c);
lsg.update(pos, n, {1});
}
if (lsg.fold(k, n)._v > 0)
chge(ans, sum);
else
break;
lsg.update(k, n, {-1});
}
if (ans < 0) {
cout << "NO"
<< "\n";
} else {
cout << "YES"
<< "\n";
if (ans < m)
cout << "NO"
<< "\n";
else
cout << "KADOMATSU!"
<< "\n";
}
}
} // namespace workspace
jell