結果
| 問題 |
No.1356 Split Tile2
|
| コンテスト | |
| ユーザー |
chocorusk
|
| 提出日時 | 2021-01-17 15:14:30 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 95 ms / 2,000 ms |
| コード長 | 14,411 bytes |
| コンパイル時間 | 5,790 ms |
| コンパイル使用メモリ | 224,916 KB |
| 最終ジャッジ日時 | 2025-01-18 01:06:45 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 31 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using int64 = long long;
//const int mod = 1e9 + 7;
const int mod = 998244353;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
static constexpr uint32_t mul_inv(uint32_t n, int e = 5, uint32_t x = 1) {
return e == 0 ? x : mul_inv(n, e - 1, x * (2 - x * n));
}
template< uint32_t mod >
struct ModInt {
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 inv = mul_inv(mod);
static constexpr u32 r2 = -u64(mod) % mod;
u32 x;
ModInt() : x(0) {}
ModInt(const u32 &x) : x(reduce(u64(x) * r2)) {}
u32 reduce(const u64 &w) const {
return u32(w >> 32) + mod - u32((u64(u32(w) * inv) * mod) >> 32);
}
ModInt &operator+=(const ModInt &p) {
if(int(x += p.x - 2 * mod) < 0) x += 2 * mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if(int(x -= p.x) < 0) x += 2 * mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = reduce(uint64_t(x) * p.x);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return get() == p.get(); }
bool operator!=(const ModInt &p) const { return get() != p.get(); }
int get() const { return reduce(x) % mod; }
ModInt pow(int64_t n) const {
ModInt ret(1), mul(*this);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
ModInt inverse() const {
return pow(mod - 2);
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.get();
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
using modint = ModInt< mod >;
template< typename T >
struct FormalPowerSeries : vector< T > {
using vector< T >::vector;
using P = FormalPowerSeries;
using MULT = function< P(P, P) >;
using FFT = function< void(P &) >;
static MULT &get_mult() {
static MULT mult = nullptr;
return mult;
}
static void set_mult(MULT f) {
get_mult() = f;
}
static FFT &get_fft() {
static FFT fft = nullptr;
return fft;
}
static FFT &get_ifft() {
static FFT ifft = nullptr;
return ifft;
}
static void set_fft(FFT f, FFT g) {
get_fft() = f;
get_ifft() = g;
}
void shrink() {
while(this->size() && this->back() == T(0)) this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] += r[i];
return *this;
}
P &operator+=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
P &operator-=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i];
shrink();
return *this;
}
P &operator-=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] -= r;
shrink();
return *this;
}
P &operator*=(const T &v) {
const int n = (int) this->size();
for(int k = 0; k < n; k++) (*this)[k] *= v;
return *this;
}
P &operator*=(const P &r) {
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
assert(get_mult() != nullptr);
return *this = get_mult()(*this, r);
}
P &operator%=(const P &r) {
return *this -= *this / r * r;
}
P operator-() const {
P ret(this->size());
for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
P &operator/=(const P &r) {
if(this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P pre(int sz) const {
return P(begin(*this), begin(*this) + min((int) this->size(), sz));
}
P operator>>(int sz) const {
if(this->size() <= sz) return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
P rev(int deg = -1) const {
P ret(*this);
if(deg != -1) ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
P diff() const {
const int n = (int) this->size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
P integral() const {
const int n = (int) this->size();
P ret(n + 1);
ret[0] = T(0);
for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
// F(0) must not be 0
P inv(int deg = -1) const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
if(deg == -1) {
deg = n;
}
if(get_fft() != nullptr) {
P ret(*this);
ret.resize(deg, T(0));
return ret.inv_rec();
}
P ret({T(1) / (*this)[0]});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
// F(0) must be 1
P log(int deg = -1) const {
assert((*this)[0] == 1);
const int n = (int) this->size();
if(deg == -1) deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
P sqrt(int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
if((*this)[0] == T(0)) {
for(int i = 1; i < n; i++) {
if((*this)[i] != T(0)) {
if(i & 1) return {};
if(deg - i / 2 <= 0) break;
auto ret = (*this >> i).sqrt(deg - i / 2) << (i / 2);
if(ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
P ret({T(1)});
T inv2 = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
// F(0) must be 0
P exp(int deg = -1) const {
assert((*this)[0] == T(0));
const int n = (int) this->size();
if(deg == -1) {
deg = n;
}
if(get_fft() != nullptr) {
P ret(*this);
ret.resize(deg, T(0));
return ret.exp_rec();
}
P ret({T(1)});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
template< typename F >
P online_convolution(const P &conv_coeff, F f) const {
const int n = (int) conv_coeff.size();
assert((n & (n - 1)) == 0);
vector< P > conv_ntt_coeff;
for(int i = n; i >= 1; i >>= 1) {
P g(conv_coeff.pre(i));
get_fft()(g);
conv_ntt_coeff.emplace_back(g);
}
P conv_arg(n), conv_ret(n);
auto rec = [&](auto rec, int l, int r, int d) -> void {
if(r - l <= 16) {
for(int i = l; i < r; i++) {
T sum = 0;
for(int j = l; j < i; j++) sum += conv_arg[j] * conv_coeff[i - j];
conv_ret[i] += sum;
conv_arg[i] = f(i, conv_ret[i]);
}
} else {
int m = (l + r) / 2;
rec(rec, l, m, d + 1);
P pre(r - l);
for(int i = 0; i < m - l; i++) pre[i] = conv_arg[l + i];
get_fft()(pre);
for(int i = 0; i < r - l; i++) pre[i] *= conv_ntt_coeff[d][i];
get_ifft()(pre);
for(int i = 0; i < r - m; i++) conv_ret[m + i] += pre[m + i - l];
rec(rec, m, r, d + 1);
}
};
rec(rec, 0, n, 0);
return conv_arg;
}
P exp_rec() const {
assert((*this)[0] == T(0));
const int n = (int) this->size();
int m = 1;
while(m < n) m *= 2;
P conv_coeff(m);
for(int i = 1; i < n; i++) conv_coeff[i] = (*this)[i] * i;
return online_convolution(conv_coeff, [](int i, const T &x) { return i == 0 ? 1 : x / i; }).pre(n);
}
P inv_rec() const {
assert(((*this)[0]) != T(0));
if((*this)[0] != T(1)) {
T rev = T(1) / (*this)[0];
return (*this * rev).inv_rec() * rev;
}
const int n = (int) this->size();
int m = 1;
while(m < n) m *= 2;
P conv_coeff(m);
for(int i = 1; i < n; i++) conv_coeff[i] = (*this)[i];
T rev = T(1), zero = T(0);
return online_convolution(conv_coeff, [&](int i, const T &x) { return (i == 0 ? rev : zero) - x; }).pre(n);
}
P pow(int64_t k, int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
for(int i = 0; i < n; i++) {
if((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k));
if(i * k > deg) return P(deg, T(0));
ret = (ret << (i * k)).pre(deg);
if(ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return *this;
}
T eval(T x) const {
T r = 0, w = 1;
for(auto &v : *this) {
r += w * v;
w *= x;
}
return r;
}
};
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
vector< int > rev;
vector< Mint > rts;
int base, max_base;
Mint root;
NumberTheoreticTransformFriendlyModInt() : base(1), rev{0, 1}, rts{0, 1} {
const int mod = Mint::get_mod();
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while(root.pow((mod - 1) >> 1) == 1) root += 1;
assert(root.pow(mod - 1) == 1);
root = root.pow((mod - 1) >> max_base);
}
void ensure_base(int nbase) {
if(nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
assert(nbase <= max_base);
while(base < nbase) {
Mint z = root.pow(1 << (max_base - 1 - base));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
rts[(i << 1) + 1] = rts[i] * z;
}
++base;
}
}
void ntt(vector< Mint > &a) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
Mint z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
void intt(vector< Mint > &a) {
const int n = (int) a.size();
ntt(a);
reverse(a.begin() + 1, a.end());
Mint inv_sz = Mint(1) / n;
for(int i = 0; i < n; i++) a[i] *= inv_sz;
}
vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for(int i = 0; i < sz; i++) {
a[i] *= b[i] * inv_sz;
}
reverse(a.begin() + 1, a.end());
ntt(a);
a.resize(need);
return a;
}
};
int main() {
NumberTheoreticTransformFriendlyModInt< modint > ntt;
using FPS = FormalPowerSeries< modint >;
auto mult = [&](const FPS::P &a, const FPS::P &b) {
auto ret = ntt.multiply(a, b);
return FPS::P(ret.begin(), ret.end());
};
FPS::set_mult(mult);
FPS::set_fft([&](FPS::P &a) { ntt.ntt(a); }, [&](FPS::P &a) { ntt.intt(a); });
int N;
cin >> N;
FPS F(N);
F[0]=1;
for(int i=1; i<N; i++){
F[i]=F[i-1]*modint(i+1);
}
F=F.inv();
modint ans;
for(int i=1; i<N; i++){
ans-=F[i];
}
cout<<ans<<endl;
}
chocorusk