結果

問題 No.1356 Split Tile2
ユーザー chineristACchineristAC
提出日時 2021-01-17 15:57:41
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 901 ms / 2,000 ms
コード長 3,250 bytes
コンパイル時間 678 ms
コンパイル使用メモリ 82,396 KB
実行使用メモリ 284,288 KB
最終ジャッジ日時 2024-11-29 19:05:47
合計ジャッジ時間 12,101 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 56 ms
65,444 KB
testcase_01 AC 94 ms
81,040 KB
testcase_02 AC 71 ms
72,136 KB
testcase_03 AC 76 ms
76,232 KB
testcase_04 AC 71 ms
74,144 KB
testcase_05 AC 71 ms
72,324 KB
testcase_06 AC 70 ms
71,632 KB
testcase_07 AC 72 ms
72,720 KB
testcase_08 AC 71 ms
72,452 KB
testcase_09 AC 71 ms
74,104 KB
testcase_10 AC 77 ms
76,704 KB
testcase_11 AC 70 ms
71,768 KB
testcase_12 AC 129 ms
95,740 KB
testcase_13 AC 185 ms
122,508 KB
testcase_14 AC 879 ms
284,088 KB
testcase_15 AC 899 ms
284,288 KB
testcase_16 AC 528 ms
226,068 KB
testcase_17 AC 528 ms
226,816 KB
testcase_18 AC 81 ms
81,108 KB
testcase_19 AC 528 ms
227,084 KB
testcase_20 AC 527 ms
226,920 KB
testcase_21 AC 506 ms
226,672 KB
testcase_22 AC 179 ms
122,556 KB
testcase_23 AC 529 ms
225,976 KB
testcase_24 AC 531 ms
226,096 KB
testcase_25 AC 296 ms
143,820 KB
testcase_26 AC 528 ms
226,620 KB
testcase_27 AC 299 ms
143,640 KB
testcase_28 AC 535 ms
227,016 KB
testcase_29 AC 529 ms
226,052 KB
testcase_30 AC 296 ms
143,068 KB
testcase_31 AC 99 ms
82,000 KB
testcase_32 AC 901 ms
279,968 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)

N = 2*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inv = [1]*(N+1) #逆元テーブル計算用テーブル

for i in range( 2, N + 1 ):
    g1[i]=( ( g1[i-1] * i ) % mod )
    inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod )
    g2[i]=( (g2[i-1] * inv[i]) % mod )
inv[0]=0

def _ntt(f,L,reverse=False):
    F=[f[i] for i in range(L)]
    n = L.bit_length() - 1
    base = omega
    if reverse:
        base = rev_omega

    if not n:
        return F

    size = 2**n
    wj = pow(base,2**22,mod)
    res = [0]*2**n

    for i in range(n,0,-1):
        use_omega = pow(base,2**(22+i-n),mod)
        res = [0]*2**n
        size //= 2
        w = 1
        for j in range(0,L//2,size):
            for a in range(size):
                res[a+j] = (F[a+2*j] + w * F[a+size+2*j]) % mod
                t = (w * wj) % mod
                res[L//2+a+j] = (F[a+2*j] + t * F[a+size+2*j]) % mod
            w = (w * use_omega) % mod
        F = res

    return res

def ntt(f,L=0):
    l = len(f)
    if not L:
        L = 1<<((l-1).bit_length())
    while len(f)<L:
        f.append(0)
    f=f[:L]
    F = _ntt(f,L)
    return F

def intt(f,L=0):
    l = len(f)
    if not L:
        L = 1<<((l-1).bit_length())
    while len(f)<L:
        f.append(0)
    f=f[:L]
    F = _ntt(f,L,reverse=True)
    inv = pow(L,mod-2,mod)
    for i in range(L):
        F[i] *= inv
        F[i] %= mod
    return F

def convolve(f,g,limit):
    l = len(f)+len(g)-1
    L = 1<<((l-1).bit_length())

    F = ntt(f,L)
    G = ntt(g,L)

    H = [(F[i] * G[i]) % mod for i in range(L)]

    h = intt(H,L)

    return h[:limit]

def inverse(f,limit):
    assert(f[0]!=0)
    l = len(f)
    L = 1<<((l-1).bit_length())
    n = L.bit_length()-1
    f = f[:L]
    f+=[0]*(L-len(f))

    res = [pow(f[0],mod-2,mod)]
    for i in range(1,n+1):
        h = convolve(res,f[:2**i],2**i)
        h = [(-h[i]) % mod for i in range(2**i)]
        h[0] = (h[0]+2) % mod
        res = convolve(res,h,2**i)
    return res[:limit]

def integral(f,limit):
    res = [0]+[(f[i] * inv[i+1]) % mod for i in range(len(f)-1)]
    return res[:limit]

def diff(f,limit):
    res = [(f[i+1] * (i+1)) % mod for i in range(len(f)-1)]+[0]
    return res[:limit]

def log(f,limit):
    res = convolve(diff(f,limit),inverse(f,limit),limit)
    return integral(res,limit)

def exp(f,limit):
    l = len(f)
    L = 1<<((l-1).bit_length())
    n = L.bit_length()-1
    f = f[:L]
    f+=[0]*(L-len(f))

    res = [1]
    for i in range(1,n+1):
        res += [0]*2**(i-1)
        g = log(res,2**i)
        h = [(f[j]-g[j])%mod for j in range(2**i)]
        h[0] = (h[0]+1) % mod
        res =convolve(res,h,2**i)
    return res[:limit]

def poly_pow_exp(f,k,limit):
    l = len(f)
    L = 1<<((l-1).bit_length())
    n = L.bit_length()-1
    f = f[:L]
    f+=[0]*(L-len(f))

    g = log(f,limit)
    g = [(k * g[i]) % mod for i in range(len(g))]
    h = exp(g,limit)
    return h[:limit]

N = int(input())
f = [g1[i+1] for i in range(N)]
#print(f)
f = inverse(f,N)
for i in range(N):
    f[i] = (-f[i]) %mod

f[0] += 1
f[0] %= mod

res = 0
for i in range(1,N):
    res += f[i]
    res %= mod

#print(f)
print(res)
0