結果
問題 | No.1356 Split Tile2 |
ユーザー | chineristAC |
提出日時 | 2021-01-17 15:57:41 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 901 ms / 2,000 ms |
コード長 | 3,250 bytes |
コンパイル時間 | 678 ms |
コンパイル使用メモリ | 82,396 KB |
実行使用メモリ | 284,288 KB |
最終ジャッジ日時 | 2024-11-29 19:05:47 |
合計ジャッジ時間 | 12,101 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 56 ms
65,444 KB |
testcase_01 | AC | 94 ms
81,040 KB |
testcase_02 | AC | 71 ms
72,136 KB |
testcase_03 | AC | 76 ms
76,232 KB |
testcase_04 | AC | 71 ms
74,144 KB |
testcase_05 | AC | 71 ms
72,324 KB |
testcase_06 | AC | 70 ms
71,632 KB |
testcase_07 | AC | 72 ms
72,720 KB |
testcase_08 | AC | 71 ms
72,452 KB |
testcase_09 | AC | 71 ms
74,104 KB |
testcase_10 | AC | 77 ms
76,704 KB |
testcase_11 | AC | 70 ms
71,768 KB |
testcase_12 | AC | 129 ms
95,740 KB |
testcase_13 | AC | 185 ms
122,508 KB |
testcase_14 | AC | 879 ms
284,088 KB |
testcase_15 | AC | 899 ms
284,288 KB |
testcase_16 | AC | 528 ms
226,068 KB |
testcase_17 | AC | 528 ms
226,816 KB |
testcase_18 | AC | 81 ms
81,108 KB |
testcase_19 | AC | 528 ms
227,084 KB |
testcase_20 | AC | 527 ms
226,920 KB |
testcase_21 | AC | 506 ms
226,672 KB |
testcase_22 | AC | 179 ms
122,556 KB |
testcase_23 | AC | 529 ms
225,976 KB |
testcase_24 | AC | 531 ms
226,096 KB |
testcase_25 | AC | 296 ms
143,820 KB |
testcase_26 | AC | 528 ms
226,620 KB |
testcase_27 | AC | 299 ms
143,640 KB |
testcase_28 | AC | 535 ms
227,016 KB |
testcase_29 | AC | 529 ms
226,052 KB |
testcase_30 | AC | 296 ms
143,068 KB |
testcase_31 | AC | 99 ms
82,000 KB |
testcase_32 | AC | 901 ms
279,968 KB |
ソースコード
mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) N = 2*10**5 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inv = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inv[i]) % mod ) inv[0]=0 def _ntt(f,L,reverse=False): F=[f[i] for i in range(L)] n = L.bit_length() - 1 base = omega if reverse: base = rev_omega if not n: return F size = 2**n wj = pow(base,2**22,mod) res = [0]*2**n for i in range(n,0,-1): use_omega = pow(base,2**(22+i-n),mod) res = [0]*2**n size //= 2 w = 1 for j in range(0,L//2,size): for a in range(size): res[a+j] = (F[a+2*j] + w * F[a+size+2*j]) % mod t = (w * wj) % mod res[L//2+a+j] = (F[a+2*j] + t * F[a+size+2*j]) % mod w = (w * use_omega) % mod F = res return res def ntt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L) return F def intt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L,reverse=True) inv = pow(L,mod-2,mod) for i in range(L): F[i] *= inv F[i] %= mod return F def convolve(f,g,limit): l = len(f)+len(g)-1 L = 1<<((l-1).bit_length()) F = ntt(f,L) G = ntt(g,L) H = [(F[i] * G[i]) % mod for i in range(L)] h = intt(H,L) return h[:limit] def inverse(f,limit): assert(f[0]!=0) l = len(f) L = 1<<((l-1).bit_length()) n = L.bit_length()-1 f = f[:L] f+=[0]*(L-len(f)) res = [pow(f[0],mod-2,mod)] for i in range(1,n+1): h = convolve(res,f[:2**i],2**i) h = [(-h[i]) % mod for i in range(2**i)] h[0] = (h[0]+2) % mod res = convolve(res,h,2**i) return res[:limit] def integral(f,limit): res = [0]+[(f[i] * inv[i+1]) % mod for i in range(len(f)-1)] return res[:limit] def diff(f,limit): res = [(f[i+1] * (i+1)) % mod for i in range(len(f)-1)]+[0] return res[:limit] def log(f,limit): res = convolve(diff(f,limit),inverse(f,limit),limit) return integral(res,limit) def exp(f,limit): l = len(f) L = 1<<((l-1).bit_length()) n = L.bit_length()-1 f = f[:L] f+=[0]*(L-len(f)) res = [1] for i in range(1,n+1): res += [0]*2**(i-1) g = log(res,2**i) h = [(f[j]-g[j])%mod for j in range(2**i)] h[0] = (h[0]+1) % mod res =convolve(res,h,2**i) return res[:limit] def poly_pow_exp(f,k,limit): l = len(f) L = 1<<((l-1).bit_length()) n = L.bit_length()-1 f = f[:L] f+=[0]*(L-len(f)) g = log(f,limit) g = [(k * g[i]) % mod for i in range(len(g))] h = exp(g,limit) return h[:limit] N = int(input()) f = [g1[i+1] for i in range(N)] #print(f) f = inverse(f,N) for i in range(N): f[i] = (-f[i]) %mod f[0] += 1 f[0] %= mod res = 0 for i in range(1,N): res += f[i] res %= mod #print(f) print(res)