結果

問題 No.1253 雀見椪
ユーザー keymoonkeymoon
提出日時 2021-01-18 11:35:27
言語 C#(csc)
(csc 3.9.0)
結果
RE  
実行時間 -
コード長 3,528 bytes
コンパイル時間 2,244 ms
コンパイル使用メモリ 107,520 KB
実行使用メモリ 19,840 KB
最終ジャッジ日時 2024-11-30 23:02:46
合計ジャッジ時間 2,937 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 29 ms
19,072 KB
testcase_01 AC 29 ms
19,072 KB
testcase_02 AC 30 ms
19,200 KB
testcase_03 AC 45 ms
19,840 KB
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #

using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Numerics;
using System.Text;
using System.Text.RegularExpressions;
using System.Threading.Tasks;
using static System.Math;
public static class P
{
    public static void Main()
    {
        int t = int.Parse(Console.ReadLine());
        for (int i = 0; i < t; i++) Solve();
    }
    static void Solve()
    {
        var input = Console.ReadLine().Split().Select(int.Parse).ToArray();
        var n = input[0];
        var gProb = (ModInt)input[1] / input[2];
        var cProb = (ModInt)input[3] / input[4];
        var pProb = (ModInt)input[5] / input[6];
        var res = 1
            - (Power(1 - gProb, n) - Power(cProb, n) - Power(pProb, n))  // グーが出されないが、チョキのみ/パーのみではない
            - (Power(1 - cProb, n) - Power(gProb, n) - Power(pProb, n))  // チョキが出されないが、グーのみ/パーのみではない
            - (Power(1 - pProb, n) - Power(gProb, n) - Power(cProb, n)); // パーが出されないが、グーのみ/チョキのみではない
        Console.WriteLine(res);
    }
    static ModInt Power(ModInt n, long m)
    {
        ModInt pow = n;
        ModInt res = 1;
        while (m > 0)
        {
            if ((m & 1) == 1) res *= pow;
            pow *= pow;
            m >>= 1;
        }
        return res;
    }
}


struct ModInt
{
    public const int Mod = 1000000007;
    const long POSITIVIZER = ((long)Mod) << 31;
    long Data;
    public ModInt(long data) { if ((Data = data % Mod) < 0) Data += Mod; }
    public static implicit operator long(ModInt modInt) => modInt.Data;
    public static implicit operator ModInt(long val) => new ModInt(val);
    public static ModInt operator +(ModInt a, int b) => new ModInt() { Data = (a.Data + b + POSITIVIZER) % Mod };
    public static ModInt operator +(ModInt a, long b) => new ModInt(a.Data + b);
    public static ModInt operator +(ModInt a, ModInt b) { long res = a.Data + b.Data; return new ModInt() { Data = res >= Mod ? res - Mod : res }; }
    public static ModInt operator -(ModInt a, int b) => new ModInt() { Data = (a.Data - b + POSITIVIZER) % Mod };
    public static ModInt operator -(ModInt a, long b) => new ModInt(a.Data - b);
    public static ModInt operator -(ModInt a, ModInt b) { long res = a.Data - b.Data; return new ModInt() { Data = res < 0 ? res + Mod : res }; }
    public static ModInt operator *(ModInt a, int b) => new ModInt(a.Data * b);
    public static ModInt operator *(ModInt a, long b) => a * new ModInt(b);
    public static ModInt operator *(ModInt a, ModInt b) => new ModInt() { Data = a.Data * b.Data % Mod };
    public static ModInt operator /(ModInt a, ModInt b) => new ModInt() { Data = a.Data * GetInverse(b) % Mod };
    public static bool operator ==(ModInt a, ModInt b) => a.Data == b.Data;
    public static bool operator !=(ModInt a, ModInt b) => a.Data != b.Data;
    public override string ToString() => Data.ToString();
    public override bool Equals(object obj) => (ModInt)obj == this;
    public override int GetHashCode() => (int)Data;
    static long GetInverse(long a)
    {
        long div, p = Mod, x1 = 1, y1 = 0, x2 = 0, y2 = 1;
        while (true)
        {
            if (p == 1) return x2 + Mod; div = a / p; x1 -= x2 * div; y1 -= y2 * div; a %= p;
            if (a == 1) return x1 + Mod; div = p / a; x2 -= x1 * div; y2 -= y1 * div; p %= a;
        }
    }
}
0