結果
問題 | No.1364 [Renaming] Road to Cherry from Zelkova |
ユーザー | kaikey |
提出日時 | 2021-01-22 23:08:18 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,518 bytes |
コンパイル時間 | 3,835 ms |
コンパイル使用メモリ | 220,224 KB |
実行使用メモリ | 24,120 KB |
最終ジャッジ日時 | 2024-12-28 06:19:17 |
合計ジャッジ時間 | 9,998 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,248 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | AC | 32 ms
9,344 KB |
testcase_24 | AC | 28 ms
5,632 KB |
testcase_25 | AC | 78 ms
12,544 KB |
testcase_26 | AC | 134 ms
16,128 KB |
testcase_27 | AC | 94 ms
12,288 KB |
testcase_28 | AC | 54 ms
10,368 KB |
testcase_29 | AC | 86 ms
11,904 KB |
testcase_30 | AC | 63 ms
10,240 KB |
testcase_31 | AC | 42 ms
9,984 KB |
testcase_32 | AC | 64 ms
11,008 KB |
testcase_33 | AC | 133 ms
14,720 KB |
testcase_34 | AC | 111 ms
16,256 KB |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | AC | 67 ms
9,728 KB |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | AC | 59 ms
19,180 KB |
testcase_44 | WA | - |
testcase_45 | AC | 54 ms
18,048 KB |
testcase_46 | WA | - |
testcase_47 | WA | - |
ソースコード
#include <bits/stdc++.h> #include <random> using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef pair<lint, lint> plint; typedef pair<double long, double long> pld; #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((lint)(x).size()) #define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i) #define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) #define endk '\n' #define fi first #define se second struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; template<class T> auto add = [](T a, T b) -> T { return a + b; }; template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); }; template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); }; template<class T> using V = vector<T>; using Vl = V<lint>; using VVl = V<Vl>; template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) { for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : ""); return os; } template< typename T >istream& operator>>(istream& is, vector< T >& v) { for (T& in : v) is >> in; return is; } template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); } lint ceil(lint a, lint b) { return (a + b - 1) / b; } lint digit(lint a) { return (lint)log10(a); } lint e_dist(plint a, plint b) { return abs(a.fi - b.fi) * abs(a.fi - b.fi) + abs(a.se - b.se) * abs(a.se - b.se); } lint m_dist(plint a, plint b) { return abs(a.fi - b.fi) + abs(a.se - b.se); } void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); } const lint MOD = 1e9 + 7, INF = 1e9 + 1; lint dx[8] = { 1, 0, -1, 0, 1, -1, 1, -1 }, dy[8] = { 0, 1, 0, -1, -1, -1, 1, 1 }; bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; } struct Edge { lint from, to; lint cost; Edge(lint u, lint v, lint c) { cost = c; from = u; to = v; } bool operator<(const Edge& e) const { return cost < e.cost; } }; struct WeightedEdge { lint to; lint cost; WeightedEdge(lint v, lint c = 1) { to = v; cost = c; } bool operator<(const WeightedEdge& e) const { return cost < e.cost; } }; using WeightedGraph = V<V<WeightedEdge>>; typedef pair<lint, plint> tlint; typedef pair<plint, plint> qlint; typedef pair<string, lint> valstring; template <std::int_fast64_t Modulus> class modint { using u64 = std::int_fast64_t; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(x% Modulus) {} constexpr u64& value() noexcept { return a; } constexpr const u64& value() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint& operator+=(const modint rhs) noexcept { a += rhs.a; if (a >= Modulus) { a -= Modulus; } return *this; } constexpr modint& operator-=(const modint rhs) noexcept { if (a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint& operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint& operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } }; typedef modint<MOD> ModInt; ModInt mod_pow(ModInt x, lint n) { ModInt ret = 1; while (n > 0) { if (n & 1) (ret *= x); (x *= x); n >>= 1; } return ret; } ModInt func[200000]; void funcinit(int N) { func[0] = 1; for (int i = 1; i <= N; i++) { func[i] = func[i - 1] * i; } } ModInt comb(ModInt n, ModInt r) { if (n.a <= 0 || n.a < r.a) { return 1; } return func[n.a] / (func[r.a] * func[(n - r).a]); } struct Topological_Sort { public: Topological_Sort(int _n) : G(_n, Vl()), indegree(_n, 0), N(_n) {} void add_edge(int u, int v) { G[u].push_back(v); indegree[v]++; } Vl get() { Vl sorted_vertices; Vl tmp_indegree = indegree; queue<int> que; REP(i, N) { if (tmp_indegree[i] == 0) que.push(i); } while (!que.empty()) { int v = que.front(); que.pop(); REP(i, SZ(G[v])) { int u = G[v][i]; tmp_indegree[u]--; if (tmp_indegree[u] == 0) que.push(u); } sorted_vertices.push_back(v); } return sorted_vertices; } private: VVl G; Vl indegree; int N; }; lint N, M, u, v, l, a; int main() { cin >> N >> M; VVl to(N + 1, Vl()); V<V<tlint>> rev(N + 1, V<tlint>()); Topological_Sort topo(N + 1); REP(i, M) { cin >> u >> v >> l >> a; topo.add_edge(u, v); rev[v].push_back({ u, {l, a} }); } auto vec = topo.get(); if (SZ(vec) != N + 1) { cout << "INF" << endk; } else { reverse(ALL(vec)); V<ModInt> dp(N + 1); for (lint v : vec) { for (auto nxt : rev[v]) { dp[nxt.first] += (dp[v] + nxt.second.first) * nxt.second.second; } } cout << dp[vec.back()].a << endk; } }