結果
| 問題 |
No.891 隣接3項間の漸化式
|
| コンテスト | |
| ユーザー |
bayashiko
|
| 提出日時 | 2021-01-27 04:55:07 |
| 言語 | C++17(clang) (17.0.6 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 7,194 bytes |
| コンパイル時間 | 4,841 ms |
| コンパイル使用メモリ | 165,052 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-06-24 02:33:52 |
| 合計ジャッジ時間 | 6,161 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 39 |
ソースコード
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
using namespace std;
//#include<boost/multiprecision/cpp_int.hpp>
//#include<boost/multiprecision/cpp_dec_float.hpp>
//namespace mp=boost::multiprecision;
//#define mulint mp::cpp_int
//#define mulfloat mp::cpp_dec_float_100
//#include<atcoder/all>
//using namespace atcoder;
struct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init;
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
#define INF (1<<30)
#define LINF (lint)(1LL<<56)
#define endl "\n"
#define rep(i,n) for(lint (i)=0;(i)<(n);(i)++)
#define reprev(i,n) for(lint (i)=(n-1);(i)>=0;(i)--)
#define flc(x) __builtin_popcountll(x)
#define pint pair<int,int>
#define pdouble pair<double,double>
#define plint pair<lint,lint>
#define fi first
#define se second
#define all(x) x.begin(),x.end()
#define vec vector<lint>
#define nep(x) next_permutation(all(x))
typedef long long lint;
typedef __int128_t llint;
int dx[8]={1,1,0,-1,-1,-1,0,1};
int dy[8]={0,1,1,1,0,-1,-1,-1};
const int MAX_N=3e5+5;
//struct edge{lint to,num;};
//vector<int> bucket[MAX_N/1000];
constexpr int MOD=1000000007;
//constexpr int MOD=998244353;
struct mint {
lint x; // typedef long long ll;
mint(lint x=0):x((x%MOD+MOD)%MOD){}
mint operator-() const { return mint(-x);}
mint& operator+=(const mint a) {
if ((x += a.x) >= MOD) x -= MOD;
return *this;
}
mint& operator-=(const mint a) {
if ((x += MOD-a.x) >= MOD) x -= MOD;
return *this;
}
mint& operator*=(const mint a) { (x *= a.x) %= MOD; return *this;}
mint operator+(const mint a) const { return mint(*this) += a;}
mint operator-(const mint a) const { return mint(*this) -= a;}
mint operator*(const mint a) const { return mint(*this) *= a;}
mint pow(lint t) const {
if (!t) return 1;
mint a = pow(t>>1);
a *= a;
if (t&1) a *= *this;
return a;
}
// for prime mod
mint inv() const { return pow(MOD-2);}
mint& operator/=(const mint a) { return *this *= a.inv();}
mint operator/(const mint a) const { return mint(*this) /= a;}
};
istream& operator>>(istream& is, const mint& a) { return is >> a.x;}
ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}
template<class T>
struct Matrix{
vector<vector<T>> A;
Matrix(){};
Matrix(size_t n,size_t m):A(n,vector<T>(m,0)){};
Matrix(size_t n):A(n,vector<T>(n,0)){};
size_t height() const{
return (A.size());
}
size_t width() const{
return (A[0].size());
}
inline const vector<T> &operator[](int k) const{
return (A.at(k));
}
inline vector<T> &operator[](int k){
return (A.at(k));
}
static Matrix I(size_t n) {
Matrix mat(n);
rep(i,n) mat[i][i]=1;
return (mat);
}
static Matrix O(size_t n) {
Matrix mat(n);
return (mat);
}
static Matrix make(vector<vector<T>> tsumugi){
Matrix mat(tsumugi.size(),tsumugi[0].size());
rep(i,tsumugi.size()) rep(j,tsumugi[0].size()){
mat[i][j]=tsumugi[i][j];
}
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n=height(),m=width();
assert(n==B.height() && m==B.width());
rep(i,n) rep(j,m) (*this)[i][j]+=B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
rep(i,n) rep(j,m) (*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector< vector< T > > C(n, vector< T >(m, 0));
rep(i,n) rep(j,m) rep(k,p) C[i][j]=(C[i][j]+(*this)[i][k]*B[k][j]);
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B=Matrix::I(height());
while(k>0) {
if(k&1) B*=*this;
*this*=*this;
k>>=1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const{return (Matrix(*this) += B);}
Matrix operator-(const Matrix &B) const{return (Matrix(*this) -= B);}
Matrix operator*(const Matrix &B) const{return (Matrix(*this) *= B);}
Matrix operator^(const long long k) const{return (Matrix(*this) ^= k);}
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for(int i = 0; i < n; i++) {
os << "[";
for(int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for(int i = 0; i < width(); i++) {
int idx = -1;
for(int j = i; j < width(); j++) {
if(B[j][i] != 0) idx = j;
}
if(idx == -1) return (0);
if(i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for(int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for(int j = i + 1; j < width(); j++) {
T a = B[j][i];
for(int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
vector<vector<mint>> mtx{
{1,1},//F(N-1),F(N-2),...,F(N-K)の係数
{1,0}
}; // K次正方行列
vector<vector<mint>> F{{0,1}}; //F(1)~F(K)の値
Matrix<mint> MTX;
Matrix<mint> func;
void powerinit(){
MTX=MTX.make(mtx);
func=func.make(F);
}
template<class T>
Matrix<T> Maker(vector<vector<lint>> base){
Matrix<T> res=res.make(base);
return res;
}
template<class T>
Matrix<T> PowMatSum(Matrix<T> A,lint n){ //A+A^2+...+A^Nを返す
int msize=A.height();
Matrix<T> B(msize*2);
rep(i,msize) rep(j,msize) B[i][j]=A[i][j];
rep(i,msize) B[msize+i][i]=B[msize+i][msize+i]=1;
B^=n+1;
rep(i,msize) B[msize+i][i]-=1;
Matrix<T> res(msize);
rep(i,msize) rep(j,msize) res[i][j]=B[msize+i][j];
return res;
}
template<class T>
T calc(lint n,Matrix<T> A,Matrix<T> f){ //F(N)の計算
if(n==0) return 0;
A^=n-1;
T res=0; //零元
rep(i,A.height()) res+=A[A.height()-1][i]*f[0][A.height()-1-i]; //演算 適宜演算子を変える
return res;
}
template<class T>
T calcsum(lint n,Matrix<T> A,Matrix<T> f){ //Σ[i=1..N]F(i)の計算
if(n==0) return 0;
int msize=A.height();
Matrix<T> B(msize*2);
rep(i,msize) rep(j,msize) B[i][j]=A[i][j];
rep(i,msize) B[msize+i][i]=B[msize+i][msize+i]=1;
B^=n;
rep(i,msize) B[msize+i][i]-=1;
T res=0; //零元
rep(i,msize) res+=B[msize*2-1][i]*f[0][msize-1-i]; //演算 適宜演算子を変える
return res;
}
int main(){
int a,b,n;
cin >> a >> b >> n;
mtx[0][0]=a,mtx[0][1]=b;
powerinit();
cout << calc(n+1,MTX,func) << endl;
}
bayashiko