結果
問題 | No.1127 変形パスカルの三角形 |
ユーザー |
👑 ![]() |
提出日時 | 2021-01-29 17:53:41 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 229 ms / 1,500 ms |
コード長 | 4,435 bytes |
コンパイル時間 | 322 ms |
コンパイル使用メモリ | 82,028 KB |
実行使用メモリ | 116,864 KB |
最終ジャッジ日時 | 2024-06-27 04:44:23 |
合計ジャッジ時間 | 6,961 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 30 |
ソースコード
class Modulo_Error(Exception):passclass Modulo():def __init__(self,a,n):self.a=a%nself.n=ndef __str__(self):return "{} (mod {})".format(self.a,self.n)def __repr__(self):return self.__str__()#+,-def __pos__(self):return selfdef __neg__(self):return Modulo(-self.a,self.n)#等号,不等号def __eq__(self,other):if isinstance(other,Modulo):return (self.a==other.a) and (self.n==other.n)elif isinstance(other,int):return (self-other).a==0def __neq__(self,other):return not(self==other)def __le__(self,other):a,p=self.a,self.nb,q=other.a,other.nreturn (a-b)%q==0 and p%q==0def __ge__(self,other):return other<=selfdef __lt__(self,other):return (self<=other) and (self!=other)def __gt__(self,other):return (self>=other) and (self!=other)#加法def __add__(self,other):if isinstance(other,Modulo):if self.n!=other.n:raise Modulo_Error("異なる法同士の演算です.")return Modulo(self.a+other.a,self.n)elif isinstance(other,int):return Modulo(self.a+other,self.n)def __radd__(self,other):if isinstance(other,int):return Modulo(self.a+other,self.n)#減法def __sub__(self,other):return self+(-other)def __rsub__(self,other):if isinstance(other,int):return -self+other#乗法def __mul__(self,other):if isinstance(other,Modulo):if self.n!=other.n:raise Modulo_Error("異なる法同士の演算です.")return Modulo(self.a*other.a,self.n)elif isinstance(other,int):return Modulo(self.a*other,self.n)def __rmul__(self,other):if isinstance(other,int):return Modulo(self.a*other,self.n)#Modulo逆数def inverse(self):return self.Modulo_Inverse()def Modulo_Inverse(self):x0, y0, x1, y1 = 1, 0, 0, 1a,b=self.a,self.nwhile b != 0:q, a, b = a // b, b, a % bx0, x1 = x1, x0 - q * x1y0, y1 = y1, y0 - q * y1if a!=1:raise Modulo_Error("{}の逆数が存在しません".format(self))else:return Modulo(x0,self.n)#除法def __truediv__(self,other):return self*(other.Modulo_Inverse())def __rtruediv__(self,other):return other*(self.Modulo_Inverse())#累乗def __pow__(self,other):if isinstance(other,int):u=abs(other)r=Modulo(pow(self.a,u,self.n),self.n)if other>=0:return relse:return r.Modulo_Inverse()else:b,n=other.a,other.nif pow(self.a,n,self.n)!=1:raise Modulo_Error("矛盾なく定義できません.")else:return self**bdef Factor_Modulo(N,M,Mode=0):"""Mode=0のとき:N! (mod M) を求める.Mode=1のとき:k! (mod M) (k=0,1,...,N) のリストも出力する.[計算量]O(N)"""if Mode==0:X=Modulo(1,M)for k in range(1,N+1):X*=kreturn Xelse:L=[Modulo(1,M)]*(N+1)for k in range(1,N+1):L[k]=k*L[k-1]return Ldef Factor_Modulo_with_Inverse(N,M):"""k=0,1,...,N に対する k! (mod M) と (k!)^(-1) (mod M) のリストを出力する.[入力]N,M:整数M>0[出力]長さ N+1 のリストのタプル (F,G):F[k]=k! (mod M), G[k]=(k!)^(-1) (mod M)[計算量]O(N)"""assert M>0F=Factor_Modulo(N,M,Mode=1)G=[0]*(N+1)G[-1]=F[-1].inverse()for k in range(N,0,-1):G[k-1]=k*G[k]return F,G#================================================def nCr(n,r):if 0<=r<=n:return F[n]*G[r]*G[n-r]else:return Modulo(0,Mod)#================================================Mod=10**9+7a,b=map(int,input().split())N,K=map(int,input().split())F,G=Factor_Modulo_with_Inverse(N+1,Mod)X=Modulo(0,Mod)for k in range(1,N+2):p=a*nCr(N-1,k-1)q=b*nCr(N-1,k-2)X+=pow(p+q,2)print((a*nCr(N-1,K-1)+b*nCr(N-1,K-2)).a)print(X.a)