結果
問題 | No.1370 置換門松列 |
ユーザー | hitonanode |
提出日時 | 2021-01-29 21:48:54 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 44 ms / 2,000 ms |
コード長 | 9,225 bytes |
コンパイル時間 | 2,423 ms |
コンパイル使用メモリ | 212,568 KB |
実行使用メモリ | 12,928 KB |
最終ジャッジ日時 | 2024-09-14 19:19:04 |
合計ジャッジ時間 | 3,920 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 33 ms
12,928 KB |
testcase_22 | AC | 24 ms
11,932 KB |
testcase_23 | AC | 27 ms
11,264 KB |
testcase_24 | AC | 10 ms
5,376 KB |
testcase_25 | AC | 44 ms
12,800 KB |
testcase_26 | AC | 42 ms
12,800 KB |
testcase_27 | AC | 17 ms
11,168 KB |
testcase_28 | AC | 18 ms
11,008 KB |
testcase_29 | AC | 12 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #else #define dbg(x) (x) #endif // Directed graph library to find strongly connected components (強連結成分分解) // 0-indexed directed graph // Complexity: O(V + E) struct DirectedGraphSCC { int V; // # of Vertices std::vector<std::vector<int>> to, from; std::vector<int> used; // Only true/false std::vector<int> vs; std::vector<int> cmp; int scc_num = -1; DirectedGraphSCC(int V = 0) : V(V), to(V), from(V), cmp(V) {} void _dfs(int v) { used[v] = true; for (auto t : to[v]) if (!used[t]) _dfs(t); vs.push_back(v); } void _rdfs(int v, int k) { used[v] = true; cmp[v] = k; for (auto t : from[v]) if (!used[t]) _rdfs(t, k); } void add_edge(int from_, int to_) { assert(from_ >= 0 and from_ < V and to_ >= 0 and to_ < V); to[from_].push_back(to_); from[to_].push_back(from_); } // Detect strongly connected components and return # of them. // Also, assign each vertex `v` the scc id `cmp[v]` (0-indexed) int FindStronglyConnectedComponents() { used.assign(V, false); vs.clear(); for (int v = 0; v < V; v++) if (!used[v]) _dfs(v); used.assign(V, false); scc_num = 0; for (int i = (int)vs.size() - 1; i >= 0; i--) if (!used[vs[i]]) _rdfs(vs[i], scc_num++); return scc_num; } // Find and output the vertices that form a closed cycle. // output: {v_1, ..., v_C}, where C is the length of cycle, // {} if there's NO cycle (graph is DAG) int _c, _init; std::vector<int> _ret_cycle; bool _dfs_detectcycle(int now, bool b0) { if (now == _init and b0) return true; for (auto nxt : to[now]) if (cmp[nxt] == _c and !used[nxt]) { _ret_cycle.emplace_back(nxt), used[nxt] = 1; if (_dfs_detectcycle(nxt, true)) return true; _ret_cycle.pop_back(); } return false; } std::vector<int> DetectCycle() { int ns = FindStronglyConnectedComponents(); if (ns == V) return {}; std::vector<int> cnt(ns); for (auto x : cmp) cnt[x]++; _c = std::find_if(cnt.begin(), cnt.end(), [](int x) { return x > 1; }) - cnt.begin(); _init = std::find(cmp.begin(), cmp.end(), _c) - cmp.begin(); used.assign(V, false); _ret_cycle.clear(); _dfs_detectcycle(_init, false); return _ret_cycle; } // After calling `FindStronglyConnectedComponents()`, generate a new graph by uniting all vertices // belonging to the same component(The resultant graph is DAG). DirectedGraphSCC GenerateTopologicalGraph() { DirectedGraphSCC newgraph(scc_num); for (int s = 0; s < V; s++) for (auto t : to[s]) { if (cmp[s] != cmp[t]) newgraph.add_edge(cmp[s], cmp[t]); } return newgraph; } }; // 2-SAT solver: Find a solution for `(Ai v Aj) ^ (Ak v Al) ^ ... = true` // - `nb_sat_vars`: Number of variables // - Considering a graph with `2 * nb_sat_vars` vertices // - Vertices [0, nb_sat_vars) means `Ai` // - vertices [nb_sat_vars, 2 * nb_sat_vars) means `not Ai` struct SATSolver : DirectedGraphSCC { int nb_sat_vars; std::vector<int> solution; SATSolver(int nb_variables = 0) : DirectedGraphSCC(nb_variables * 2), nb_sat_vars(nb_variables), solution(nb_sat_vars) {} void add_x_or_y_constraint(bool is_x_true, int x, bool is_y_true, int y) { assert(x >= 0 and x < nb_sat_vars); assert(y >= 0 and y < nb_sat_vars); if (!is_x_true) x += nb_sat_vars; if (!is_y_true) y += nb_sat_vars; add_edge((x + nb_sat_vars) % (nb_sat_vars * 2), y); add_edge((y + nb_sat_vars) % (nb_sat_vars * 2), x); } // Solve the 2-SAT problem. If no solution exists, return `false`. // Otherwise, dump one solution to `solution` and return `true`. bool run() { FindStronglyConnectedComponents(); for (int i = 0; i < nb_sat_vars; i++) { if (cmp[i] == cmp[i + nb_sat_vars]) return false; solution[i] = cmp[i] > cmp[i + nb_sat_vars]; } return true; } }; template <typename T> bool kado(T a, T b, T c) { if (a == b or b == c or a == c) return false; if (a < b and b > c) return true; if (a > b and b < c) return true; return false; } int main() { int N, M; cin >> N >> M; vector<int> A(N); cin >> A; for (auto &a : A) a--; DirectedGraphSCC graph(M); REP(i, N - 1) { if (i % 2 == 0) graph.add_edge(A[i], A[i + 1]); else graph.add_edge(A[i + 1], A[i]); } int s = graph.FindStronglyConnectedComponents(); if (s < M) { puts("No"); return 0; } dbg(A); dbg(graph.cmp); FOR(i, 1, N - 1) if (!kado(graph.cmp[A[i - 1]], graph.cmp[A[i]], graph.cmp[A[i + 1]])) { puts("No"); return 0; } cout << "Yes\n"; for (auto x : graph.cmp) cout << x + 1 << '\n'; }