結果
| 問題 |
No.1370 置換門松列
|
| コンテスト | |
| ユーザー |
👑 Kazun
|
| 提出日時 | 2021-01-29 22:51:25 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 395 ms / 2,000 ms |
| コード長 | 4,196 bytes |
| コンパイル時間 | 384 ms |
| コンパイル使用メモリ | 82,252 KB |
| 実行使用メモリ | 135,796 KB |
| 最終ジャッジ日時 | 2024-09-14 19:22:34 |
| 合計ジャッジ時間 | 4,885 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 25 |
ソースコード
class Digraph:
"""重み[なし]有向グラフを生成する.
"""
#入力定義
def __init__(self,vertex=[]):
self.vertex=set(vertex)
self.edge_number=0
self.vertex_number=len(vertex)
self.adjacent_out={v:set() for v in vertex} #出近傍(vが始点)
self.adjacent_in={v:set() for v in vertex} #入近傍(vが終点)
#頂点の追加
def add_vertex(self,*adder):
for v in adder:
if v not in self.vertex:
self.adjacent_in[v]=set()
self.adjacent_out[v]=set()
self.vertex_number+=1
self.vertex.add(v)
#辺の追加
def add_edge(self,From,To):
for v in [From,To]:
if v not in self.vertex:
self.add_vertex(v)
if To not in self.adjacent_in[From]:
self.edge_number+=1
self.adjacent_out[From].add(To)
self.adjacent_in[To].add(From)
#辺を除く
def remove_edge(self,From,To):
for v in [From,To]:
if v not in self.vertex:
self.add_vertex(v)
if To in self.adjacent_out[From]:
self.adjacent_out[From].remove(To)
self.adjacent_in[To].remove(From)
self.edge_number-=1
#頂点を除く
def remove_vertex(self,*vertexes):
for v in vertexes:
if v in self.vertex:
self.vertex_number-=1
for u in self.adjacent_out[v]:
self.adjacent_in[u].remove(v)
self.edge_number-=1
del self.adjacent_out[v]
for u in self.adjacent_in[v]:
self.adjacent_out[u].remove(v)
self.edge_number-=1
del self.adjacent_in[v]
#Walkの追加
def add_walk(self,*walk):
N=len(walk)
for k in range(N-1):
self.add_edge(walk[k],walk[k+1])
#Cycleの追加
def add_cycle(self,*cycle):
self.add_walk(*cycle)
self.add_edge(cycle[-1],cycle[0])
#頂点の交換
def __vertex_swap(self,p,q):
self.vertex.sort()
#グラフに頂点が存在するか否か
def vertex_exist(self,v):
return v in self.vertex
#グラフに辺が存在するか否か
def edge_exist(self,From,To):
if not(self.vertex_exist(From) and self.vertex_exist(To)):
return False
return To in self.adjacent_out[From]
#近傍
def neighbohood(self,v):
if not self.vertex_exist(v):
return []
return list(self.adjacent[v])
#出次数
def out_degree(self,v):
if not self.vertex_exist(v):
return 0
return len(self.adjacent_out[v])
#入次数
def in_degree(self,v):
if not self.vertex_exist(v):
return 0
return len(self.adjacent_in[v])
#次数
def degree(self,v):
if not self.vertex_exist(v):
return 0
return self.out_degree(v)-self.in_degree(v)
#頂点数
def vertex_count(self):
return len(self.vertex)
#辺数
def edge_count(self):
return self.edge_number
#頂点vを含む連結成分
def connected_component(self,v):
pass
def Topological_Sort(D):
from collections import deque
X={v:D.in_degree(v) for v in D.vertex}
Q=deque([v for v in D.vertex if X[v]==0])
S=[]
while Q:
u=Q.pop()
S.append(u)
for v in D.adjacent_out[u]:
X[v]-=1
if X[v]==0:
Q.append(v)
return S
#================================================
N,M=map(int,input().split())
A=list(map(int,input().split()))
for i in range(N-1):
if A[i]==A[i+1]:
print("No")
exit()
for i in range(N-2):
if A[i]==A[i+2]:
print("No")
exit()
Mode=0
D=Digraph(range(1,M+1))
for i in range(N-1):
if Mode:
D.add_edge(A[i],A[i+1])
else:
D.add_edge(A[i+1],A[i])
Mode^=1
T=Topological_Sort(D)
if len(T)==M:
print("Yes")
X=[0]*(M+1)
for i,v in enumerate(T,1):
X[v]=i
print(*X[1:])
else:
print("No")
Kazun