結果
問題 | No.1370 置換門松列 |
ユーザー | kcvlex |
提出日時 | 2021-01-29 22:55:56 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 64 ms / 2,000 ms |
コード長 | 8,015 bytes |
コンパイル時間 | 1,550 ms |
コンパイル使用メモリ | 163,944 KB |
最終ジャッジ日時 | 2025-01-18 09:41:39 |
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 25 |
ソースコード
#include <limits> #include <initializer_list> #include <utility> #include <bitset> #include <tuple> #include <type_traits> #include <functional> #include <string> #include <array> #include <deque> #include <list> #include <queue> #include <stack> #include <vector> #include <map> #include <set> #include <unordered_map> #include <unordered_set> #include <iterator> #include <algorithm> #include <complex> #include <random> #include <numeric> #include <iostream> #include <iomanip> #include <sstream> #include <regex> #include <cassert> #include <cstddef> #include <variant> #define endl codeforces #define ALL(v) std::begin(v), std::end(v) #define ALLR(v) std::rbegin(v), std::rend(v) using ll = std::int64_t; using ull = std::uint64_t; using pii = std::pair<int, int>; using tii = std::tuple<int, int, int>; using pll = std::pair<ll, ll>; using tll = std::tuple<ll, ll, ll>; using size_type = ssize_t; template <typename T> using vec = std::vector<T>; template <typename T> using vvec = vec<vec<T>>; template <typename T> const T& var_min(const T &t) { return t; } template <typename T> const T& var_max(const T &t) { return t; } template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); } template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); } template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); } template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); } template <typename T, std::size_t Head, std::size_t... Tail> struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; }; template <typename T, std::size_t Head> struct multi_dim_array<T, Head> { using type = std::array<T, Head>; }; template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type; template <typename T, typename F, typename... Args> void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable<F, Args...>::value) { t = f(args...); } else { for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } } template <typename T> vec<T> make_v(size_type sz) { return vec<T>(sz); } template <typename T, typename... Tail> auto make_v(size_type hs, Tail&&... ts) { auto v = std::move(make_v<T>(std::forward<Tail>(ts)...)); return vec<decltype(v)>(hs, v); } namespace init__ { struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io; } template <typename T> T ceil_pow2(T bound) { T ret = 1; while (ret < bound) ret *= 2; return ret; } template <typename T> T ceil_div(T a, T b) { return a / b + !!(a % b); } namespace graph { using Node = ll; using Weight = ll; using Edge = std::pair<Node, Weight>; template <bool Directed> struct Graph : public vvec<Edge> { using vvec<Edge>::vvec; void add_edge(Node f, Node t, Weight w = 1) { (*this)[f].emplace_back(t, w); if (!Directed) (*this)[t].emplace_back(f, w); } Graph<Directed> build_inv() const { Graph<Directed> ret(this->size()); for (Node i = 0; i < this->size(); i++) { for (const Edge &e : (*this)[i]) { Node j; Weight w; std::tie(j, w) = e; if (!Directed && j < i) continue; ret.add_edge(j, i, w); } } return ret; } }; template <typename Iterator> class dst_iterator { Iterator ite; public: dst_iterator(Iterator ite) : ite(ite) { } bool operator ==(const dst_iterator<Iterator> &oth) const { return ite == oth.ite; } bool operator !=(const dst_iterator<Iterator> &oth) const { return !(*this == oth); } bool operator <(const dst_iterator<Iterator> &oth) const { return ite < oth.ite; } bool operator >(const dst_iterator<Iterator> &oth) const { return ite > oth.ite; } bool operator <=(const dst_iterator<Iterator> &oth) const { return ite <= oth.ite; } bool operator >=(const dst_iterator<Iterator> &oth) const { return ite >= oth.ite; } const Node& operator *() { return ite->first; } const Node& operator *() const { return ite->first; } dst_iterator operator ++() { ++ite; return ite; } }; class dst_iteration { using ite_type = vec<Edge>::const_iterator; const vec<Edge> &edges; public: dst_iteration(const vec<Edge> &edges) : edges(edges) { } auto begin() const { return dst_iterator<ite_type>(edges.cbegin()); } auto end() const { return dst_iterator<ite_type>(edges.cend()); } }; class dst_reverse_iteration { using ite_type = vec<Edge>::const_reverse_iterator; const vec<Edge> &edges; public: dst_reverse_iteration(const vec<Edge> &edges) : edges(edges) { } auto begin() const { return dst_iterator<ite_type>(edges.crbegin()); } auto end() const { return dst_iterator<ite_type>(edges.crend()); } }; dst_iteration dst(const vec<Edge> &edges) { return dst_iteration(edges); } dst_reverse_iteration rdst(const vec<Edge> &edges) { return dst_reverse_iteration(edges); } } namespace graph { template <typename Graph> struct topological_sort { const Graph &g; size_type n; vec<Node> ret; vec<bool> pass, used; topological_sort(const Graph &g) : g(g), n(g.size()), pass(n), used(n) { } bool dfs(ll cur) { used[cur] = true; pass[cur] = true; for (auto &&nxt : dst(g[cur])) { if (pass[nxt]) return false; if (used[nxt]) continue; if (!dfs(nxt)) return false; } ret.push_back(cur); pass[cur] = false; return true; } vec<Node> solve() { for (Node i = 0; i < n; i++) { if (used[i]) continue; if (!dfs(i)) { ret.clear(); break; } } std::reverse(ALL(ret)); return ret; } }; template <typename Graph> vec<Node> topsort(const Graph &g) { return topological_sort<Graph>(g).solve(); } } vec<ll> solve() { ll n, m; std::cin >> n >> m; vec<ll> av(n); for (ll &e : av) { std::cin >> e; e--; } for (ll i = 0; i < n - 2; i++) { if (av[i] == av[i + 2]) return vec<ll>(0); } for (ll dir = 0; dir <= 1; dir++) { graph::Graph<true> g(m); for (ll i = 0; i < n - 2; i++) { const ll a0 = av[i], a1 = av[i + 1], a2 = av[i + 2]; if ((dir + i) & 1) { g.add_edge(a0, a1); g.add_edge(a2, a1); } else { g.add_edge(a1, a0); g.add_edge(a1, a2); } } auto nodes = graph::topsort(g); if (nodes.empty()) continue; vvec<ll> pairs(m); for (ll i = 0; i < n - 2; i++) { const ll a = av[i], b = av[i + 2]; pairs[a].push_back(b); pairs[b].push_back(a); } vec<ll> lb(m, 0); vec<ll> ans(m, 0); for (ll e : nodes) { ans[e] = lb[e] + 1; for (ll nxt : graph::dst(g[e])) chmax(lb[nxt], ans[e]); for (ll nxt : pairs[e]) chmax(lb[nxt], ans[e]); } for (ll &e : ans) if (e == 0) e = 1; return ans; } return vec<ll>(0); } int main() { auto ans = solve(); if (ans.empty()) { std::cout << "No\n"; } else { std::cout << "Yes\n"; ll n = ans.size(); for (ll i = 0; i < n; i++) std::cout << ans[i] << " \n"[i + 1 == n]; } return 0; }