結果
| 問題 |
No.1370 置換門松列
|
| コンテスト | |
| ユーザー |
kcvlex
|
| 提出日時 | 2021-01-29 22:55:56 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 64 ms / 2,000 ms |
| コード長 | 8,015 bytes |
| コンパイル時間 | 1,550 ms |
| コンパイル使用メモリ | 163,944 KB |
| 最終ジャッジ日時 | 2025-01-18 09:41:39 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 25 |
ソースコード
#include <limits>
#include <initializer_list>
#include <utility>
#include <bitset>
#include <tuple>
#include <type_traits>
#include <functional>
#include <string>
#include <array>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <iterator>
#include <algorithm>
#include <complex>
#include <random>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <regex>
#include <cassert>
#include <cstddef>
#include <variant>
#define endl codeforces
#define ALL(v) std::begin(v), std::end(v)
#define ALLR(v) std::rbegin(v), std::rend(v)
using ll = std::int64_t;
using ull = std::uint64_t;
using pii = std::pair<int, int>;
using tii = std::tuple<int, int, int>;
using pll = std::pair<ll, ll>;
using tll = std::tuple<ll, ll, ll>;
using size_type = ssize_t;
template <typename T> using vec = std::vector<T>;
template <typename T> using vvec = vec<vec<T>>;
template <typename T> const T& var_min(const T &t) { return t; }
template <typename T> const T& var_max(const T &t) { return t; }
template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); }
template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); }
template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); }
template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); }
template <typename T, std::size_t Head, std::size_t... Tail>
struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; };
template <typename T, std::size_t Head>
struct multi_dim_array<T, Head> { using type = std::array<T, Head>; };
template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type;
template <typename T, typename F, typename... Args>
void fill_seq(T &t, F f, Args... args) {
if constexpr (std::is_invocable<F, Args...>::value) {
t = f(args...);
} else {
for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i);
}
}
template <typename T> vec<T> make_v(size_type sz) { return vec<T>(sz); }
template <typename T, typename... Tail>
auto make_v(size_type hs, Tail&&... ts) {
auto v = std::move(make_v<T>(std::forward<Tail>(ts)...));
return vec<decltype(v)>(hs, v);
}
namespace init__ {
struct InitIO {
InitIO() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(30);
}
} init_io;
}
template <typename T>
T ceil_pow2(T bound) {
T ret = 1;
while (ret < bound) ret *= 2;
return ret;
}
template <typename T>
T ceil_div(T a, T b) { return a / b + !!(a % b); }
namespace graph {
using Node = ll;
using Weight = ll;
using Edge = std::pair<Node, Weight>;
template <bool Directed>
struct Graph : public vvec<Edge> {
using vvec<Edge>::vvec;
void add_edge(Node f, Node t, Weight w = 1) {
(*this)[f].emplace_back(t, w);
if (!Directed) (*this)[t].emplace_back(f, w);
}
Graph<Directed> build_inv() const {
Graph<Directed> ret(this->size());
for (Node i = 0; i < this->size(); i++) {
for (const Edge &e : (*this)[i]) {
Node j;
Weight w;
std::tie(j, w) = e;
if (!Directed && j < i) continue;
ret.add_edge(j, i, w);
}
}
return ret;
}
};
template <typename Iterator>
class dst_iterator {
Iterator ite;
public:
dst_iterator(Iterator ite) : ite(ite) { }
bool operator ==(const dst_iterator<Iterator> &oth) const {
return ite == oth.ite;
}
bool operator !=(const dst_iterator<Iterator> &oth) const {
return !(*this == oth);
}
bool operator <(const dst_iterator<Iterator> &oth) const {
return ite < oth.ite;
}
bool operator >(const dst_iterator<Iterator> &oth) const {
return ite > oth.ite;
}
bool operator <=(const dst_iterator<Iterator> &oth) const {
return ite <= oth.ite;
}
bool operator >=(const dst_iterator<Iterator> &oth) const {
return ite >= oth.ite;
}
const Node& operator *() {
return ite->first;
}
const Node& operator *() const {
return ite->first;
}
dst_iterator operator ++() {
++ite;
return ite;
}
};
class dst_iteration {
using ite_type = vec<Edge>::const_iterator;
const vec<Edge> &edges;
public:
dst_iteration(const vec<Edge> &edges) : edges(edges) { }
auto begin() const {
return dst_iterator<ite_type>(edges.cbegin());
}
auto end() const {
return dst_iterator<ite_type>(edges.cend());
}
};
class dst_reverse_iteration {
using ite_type = vec<Edge>::const_reverse_iterator;
const vec<Edge> &edges;
public:
dst_reverse_iteration(const vec<Edge> &edges) : edges(edges) { }
auto begin() const {
return dst_iterator<ite_type>(edges.crbegin());
}
auto end() const {
return dst_iterator<ite_type>(edges.crend());
}
};
dst_iteration dst(const vec<Edge> &edges) {
return dst_iteration(edges);
}
dst_reverse_iteration rdst(const vec<Edge> &edges) {
return dst_reverse_iteration(edges);
}
}
namespace graph {
template <typename Graph>
struct topological_sort {
const Graph &g;
size_type n;
vec<Node> ret;
vec<bool> pass, used;
topological_sort(const Graph &g)
: g(g), n(g.size()), pass(n), used(n)
{
}
bool dfs(ll cur) {
used[cur] = true;
pass[cur] = true;
for (auto &&nxt : dst(g[cur])) {
if (pass[nxt]) return false;
if (used[nxt]) continue;
if (!dfs(nxt)) return false;
}
ret.push_back(cur);
pass[cur] = false;
return true;
}
vec<Node> solve() {
for (Node i = 0; i < n; i++) {
if (used[i]) continue;
if (!dfs(i)) {
ret.clear();
break;
}
}
std::reverse(ALL(ret));
return ret;
}
};
template <typename Graph>
vec<Node> topsort(const Graph &g) {
return topological_sort<Graph>(g).solve();
}
}
vec<ll> solve() {
ll n, m;
std::cin >> n >> m;
vec<ll> av(n);
for (ll &e : av) {
std::cin >> e;
e--;
}
for (ll i = 0; i < n - 2; i++) {
if (av[i] == av[i + 2]) return vec<ll>(0);
}
for (ll dir = 0; dir <= 1; dir++) {
graph::Graph<true> g(m);
for (ll i = 0; i < n - 2; i++) {
const ll a0 = av[i], a1 = av[i + 1], a2 = av[i + 2];
if ((dir + i) & 1) {
g.add_edge(a0, a1);
g.add_edge(a2, a1);
} else {
g.add_edge(a1, a0);
g.add_edge(a1, a2);
}
}
auto nodes = graph::topsort(g);
if (nodes.empty()) continue;
vvec<ll> pairs(m);
for (ll i = 0; i < n - 2; i++) {
const ll a = av[i], b = av[i + 2];
pairs[a].push_back(b);
pairs[b].push_back(a);
}
vec<ll> lb(m, 0);
vec<ll> ans(m, 0);
for (ll e : nodes) {
ans[e] = lb[e] + 1;
for (ll nxt : graph::dst(g[e])) chmax(lb[nxt], ans[e]);
for (ll nxt : pairs[e]) chmax(lb[nxt], ans[e]);
}
for (ll &e : ans) if (e == 0) e = 1;
return ans;
}
return vec<ll>(0);
}
int main() {
auto ans = solve();
if (ans.empty()) {
std::cout << "No\n";
} else {
std::cout << "Yes\n";
ll n = ans.size();
for (ll i = 0; i < n; i++) std::cout << ans[i] << " \n"[i + 1 == n];
}
return 0;
}
kcvlex