結果

問題 No.12 限定された素数
ユーザー kohei2019kohei2019
提出日時 2021-02-09 16:20:11
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 780 ms / 5,000 ms
コード長 5,068 bytes
コンパイル時間 131 ms
コンパイル使用メモリ 82,652 KB
実行使用メモリ 176,676 KB
最終ジャッジ日時 2024-07-06 22:14:34
合計ジャッジ時間 19,748 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 640 ms
175,540 KB
testcase_01 AC 695 ms
176,676 KB
testcase_02 AC 664 ms
175,908 KB
testcase_03 AC 600 ms
175,776 KB
testcase_04 AC 655 ms
175,732 KB
testcase_05 AC 773 ms
175,472 KB
testcase_06 AC 685 ms
175,840 KB
testcase_07 AC 700 ms
175,608 KB
testcase_08 AC 762 ms
175,752 KB
testcase_09 AC 662 ms
175,868 KB
testcase_10 AC 761 ms
175,880 KB
testcase_11 AC 694 ms
176,464 KB
testcase_12 AC 651 ms
175,700 KB
testcase_13 AC 715 ms
176,176 KB
testcase_14 AC 758 ms
175,676 KB
testcase_15 AC 731 ms
176,512 KB
testcase_16 AC 755 ms
175,500 KB
testcase_17 AC 637 ms
175,924 KB
testcase_18 AC 623 ms
175,944 KB
testcase_19 AC 625 ms
176,096 KB
testcase_20 AC 703 ms
175,888 KB
testcase_21 AC 735 ms
175,836 KB
testcase_22 AC 646 ms
175,852 KB
testcase_23 AC 654 ms
175,876 KB
testcase_24 AC 669 ms
175,860 KB
testcase_25 AC 780 ms
175,540 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import math
import sys
sys.setrecursionlimit(10**7)
#競技プログラミング対整数問題のライブラリーです
class integerlib():
    def __init__(self):
        pass
    
    def primeset(self,N): #N以下の素数をsetで求める.エラトステネスの篩O(√Nlog(N))
        lsx = [1]*(N+1)
        for i in range(2,int(-(-N**0.5//1))+1):
            if lsx[i] == 1:
                for j in range(i,N//i+1):
                    lsx[j*i] = 0
        setprime = set()
        for i in range(2,N+1):
            if lsx[i] == 1:
                setprime.add(i)
        return setprime
    
    def defprime(self,N):#素数かどうかの判定、エラトステネスの篩O(√Nlog(N))
        return N in self.primeset(N)
    
    def gcd(self,ls):#最大公約数
        ls = list(ls)
        ans = 0
        for i in ls:
            ans = math.gcd(ans,i)
        return ans

    def lmc(self,ls):#最小公倍数
        ls = list(ls)
        ans = self.gcd(ls)
        for i in ls:
            ans = self.lmcsub(ans,i)
        return ans
    
    def lmcsub(self,a,b):
        gcd = math.gcd(a,b)
        lmc = (a*b)//gcd
        return lmc

    
    def factorization(self,N):#素因数分解√N
        arr = []
        temp = N
        for i in range(2, int(-(-N**0.5//1))+1):
            if temp%i==0:
                cnt=0
                while temp%i==0:
                    cnt+=1
                    temp //= i
                arr.append([i, cnt])
        if temp!=1:
            arr.append([temp, 1])
        if arr==[]:
            arr.append([N, 1])
        return arr #[素因数、個数]

    def factorizationset(self,N):#素因数分解√N,含まれている素因数の種類
        if N == 1:
            return set()
        ls = self.factorization(N)
        setf = set()
        for j in ls:
            setf.add(j[0])
        return setf

    def divisorsnum(self,N):#約数の個数
        ls = []
        for i in self.factorization(N):
            ls.append(i[1])
        d = 1
        for i in ls:
            d *= i+1
        return d

    def Eulerfunc(self,N):#オイラー関数正の整数Nが与えられる。1,2,…,Nのうち、Nと互いに素であるものの個数を求めよ。
        ls = list(self.factorizationset(N))
        ls2 = [N]
        for i in ls:
            ls2.append(ls2[-1]-ls2[-1]//i)
        return ls2[-1]

    def make_divisors(self,N):#約数列挙O(√N)
        lower_divisors , upper_divisors = [], []
        i = 1
        while i*i <= N:
            if N % i == 0:
                lower_divisors.append(i)
                if i != N // i:
                    upper_divisors.append(N//i)
            i += 1
        return lower_divisors + upper_divisors[::-1]

    def invmod(self,a,mod):#mod逆元
        if a == 0:
            return 0
        if a == 1:
            return 1
        return (-self.invmod(mod % a, mod) * (mod // a)) % mod
        
    def cmbmod(self,n, r, mod):#nCr % mod
        inv = [0,1]
        for i in range(2, n + 1):
            inv.append((-inv[mod % i] * (mod // i)) % mod)
        cmd = 1
        for i in range(1,min(r,n-r)+1):
            cmd = (cmd*(n-i+1)*inv[i])%mod
        return cmd

    def permmod(self,n, r, mod):#nPr % mod
        perm = 1
        for i in range(n,r-1,-1):
            perm = (perm*i)%mod
        return perm

    def modPow(self,a,n,mod):#繰り返し二乗法 a**n % mod
        if n==0:
            return 1
        if n==1:
            return a%mod
        if n % 2 == 1:
            return (a*self.modPow(a,n-1,mod)) % mod
        t = self.modPow(a,n//2,mod)
        return (t*t)%mod
import copy
#5000000までの素数列挙
#10種類の数字をカウント
IT = integerlib()
lsp = list(IT.primeset(5000000))
lsp.sort()
M = len(lsp)
#尺取り法
N = int(input())
lsA = set(list(map(int,input().split())))
counter = [0]*(10)
def ok(counter):#余計なのはいってたらf
    f = True
    for i in range(10):
        if counter[i] > 0 and (not(i in lsA)):
            f = False
    return f
def ok2(counter):#条件を満たす
    f = True
    for i in range(10):
        if counter[i] > 0 and (not(i in lsA)):
            f = False
        if counter[i] == 0 and (i in lsA):
            f = False
    return f
r = 0
ans = -1
for i in range(M):
    while r < M and ok(counter):
        c = list(str(lsp[r]))
        c = [int(j) for j in c]
        for j in c:
            counter[j] += 1
        if ok2(counter):
            if i == 0:
                ln = 1
            else:
                ln = (lsp[i-1]+1)
            if r == M-1:
                rn = 5000000
            else:
                rn = lsp[r+1]-1
            ans = max(ans,rn-ln)        
        r += 1
    if ok2(counter):
        if i == 0:
            ln = 1
        else:
            ln = (lsp[i-1]+1)
        if r == len(lsp):
            rn = 5000000
        else:
            rn = lsp[r+1]-1
        ans = max(ans,rn-ln)
    c = list(str(lsp[i]))
    c = [int(j) for j in c]
    for j in c:
        counter[j] -= 1
print(ans)
0