結果

問題 No.16 累乗の加算
ユーザー kohei2019
提出日時 2021-02-09 22:57:29
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 43 ms / 5,000 ms
コード長 3,834 bytes
コンパイル時間 163 ms
コンパイル使用メモリ 82,340 KB
実行使用メモリ 64,008 KB
最終ジャッジ日時 2024-07-07 04:44:39
合計ジャッジ時間 1,181 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import math
import sys
sys.setrecursionlimit(10**7)
#
class integerlib():
def __init__(self):
pass
def primeset(self,N): #Nset.O(√Nlog(N))
lsx = [1]*(N+1)
for i in range(2,int(-(-N**0.5//1))+1):
if lsx[i] == 1:
for j in range(i,N//i+1):
lsx[j*i] = 0
setprime = set()
for i in range(2,N+1):
if lsx[i] == 1:
setprime.add(i)
return setprime
def defprime(self,N):#O(√Nlog(N))
return N in self.primeset(N)
def gcd(self,ls):#
ls = list(ls)
ans = 0
for i in ls:
ans = math.gcd(ans,i)
return ans
def lmc(self,ls):#
ls = list(ls)
ans = self.gcd(ls)
for i in ls:
ans = self.lmcsub(ans,i)
return ans
def lmcsub(self,a,b):
gcd = math.gcd(a,b)
lmc = (a*b)//gcd
return lmc
def factorization(self,N):#√N
arr = []
temp = N
for i in range(2, int(-(-N**0.5//1))+1):
if temp%i==0:
cnt=0
while temp%i==0:
cnt+=1
temp //= i
arr.append([i, cnt])
if temp!=1:
arr.append([temp, 1])
if arr==[]:
arr.append([N, 1])
return arr #[]
def factorizationset(self,N):#√N,
if N == 1:
return set()
ls = self.factorization(N)
setf = set()
for j in ls:
setf.add(j[0])
return setf
def divisorsnum(self,N):#
ls = []
for i in self.factorization(N):
ls.append(i[1])
d = 1
for i in ls:
d *= i+1
return d
def Eulerfunc(self,N):#N1,2,…,NN
ls = list(self.factorizationset(N))
ls2 = [N]
for i in ls:
ls2.append(ls2[-1]-ls2[-1]//i)
return ls2[-1]
def make_divisors(self,N):#O(√N)
lower_divisors , upper_divisors = [], []
i = 1
while i*i <= N:
if N % i == 0:
lower_divisors.append(i)
if i != N // i:
upper_divisors.append(N//i)
i += 1
return lower_divisors + upper_divisors[::-1]
def invmod(self,a,mod):#mod
if a == 0:
return 0
if a == 1:
return 1
return (-self.invmod(mod % a, mod) * (mod // a)) % mod
def cmbmod(self,n, r, mod):#nCr % mod
inv = [0,1]
for i in range(2, n + 1):
inv.append((-inv[mod % i] * (mod // i)) % mod)
cmd = 1
for i in range(1,min(r,n-r)+1):
cmd = (cmd*(n-i+1)*inv[i])%mod
return cmd
def permmod(self,n, r, mod):#nPr % mod
perm = 1
for i in range(n,r-1,-1):
perm = (perm*i)%mod
return perm
def modPow(self,a,n,mod):# a**n % mod
if n==0:
return 1
if n==1:
return a%mod
if n % 2 == 1:
return (a*self.modPow(a,n-1,mod)) % mod
t = self.modPow(a,n//2,mod)
return (t*t)%mod
x,N = map(int,input().split())
lsN = list(map(int,input().split()))
mod = 1000003
IT = integerlib()
ans = 0
for i in range(N):
ans += IT.modPow(x,lsN[i],mod)
ans %= mod
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0