結果

問題 No.309 シャイな人たち (1)
ユーザー Min_25Min_25
提出日時 2015-12-02 13:51:39
言語 C++11
(gcc 11.4.0)
結果
AC  
実行時間 153 ms / 4,000 ms
コード長 3,404 bytes
コンパイル時間 587 ms
コンパイル使用メモリ 67,688 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-14 07:52:01
合計ジャッジ時間 2,380 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 101 ms
6,812 KB
testcase_01 AC 113 ms
6,940 KB
testcase_02 AC 21 ms
6,940 KB
testcase_03 AC 100 ms
6,944 KB
testcase_04 AC 5 ms
6,940 KB
testcase_05 AC 26 ms
6,944 KB
testcase_06 AC 14 ms
6,940 KB
testcase_07 AC 31 ms
6,944 KB
testcase_08 AC 108 ms
6,940 KB
testcase_09 AC 119 ms
6,940 KB
testcase_10 AC 150 ms
6,944 KB
testcase_11 AC 153 ms
6,940 KB
testcase_12 AC 134 ms
6,940 KB
testcase_13 AC 2 ms
6,944 KB
testcase_14 AC 2 ms
6,944 KB
testcase_15 AC 4 ms
6,940 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:86:18: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   86 |   int R, C; scanf("%d %d", &R, &C);
      |             ~~~~~^~~~~~~~~~~~~~~~~
main.cpp:88:28: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   88 |   rep(i, R) rep(j, C) scanf("%d", &r), P[i][j] = r / 100.;
      |                       ~~~~~^~~~~~~~~~
main.cpp:89:28: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   89 |   rep(i, R) rep(j, C) scanf("%d", &S[i][j]), S[i][j] = 4 - S[i][j];
      |                       ~~~~~^~~~~~~~~~~~~~~~

ソースコード

diff #

#include <cstdio>
#include <cassert>

#include <algorithm>
#include <iostream>
#include <vector>
#include <queue>
#include <utility>

using namespace std;

using uint64 = unsigned long long;

#define rep(i, n) for (int i = 0; i < int(n); ++i)

constexpr int ipow(int base, int e, int res = 1) {
  return e == 0 ? res
                : (e & 1) ? ipow(base * base, e / 2, res * base)
                          : ipow(base * base, e / 2, res);
}

using Pair = pair<double, double>;

Pair operator + (const Pair& lhs, const Pair& rhs) {
  return Pair(lhs.first + rhs.first, lhs.second + rhs.second);
}

// precision ... 
Pair operator - (const Pair& lhs, const Pair& rhs) {
  return Pair(lhs.first - rhs.first, lhs.second - rhs.second);
}

Pair& operator += (Pair& lhs, const Pair& rhs) {
  return lhs = lhs + rhs;
}

constexpr int N = 11;
constexpr int three_N = ipow(3, N);

double P[N][N];
int S[N][N];

Pair dp[2][1 << N];
Pair cumu[three_N];
int offsets[1 << N];

template <typename T>
void arith_transform_plus(T* A, int lvn) {
  int n = 1 << lvn;
  reverse(A, A + n);
  for (int lvm = lvn; lvm > 0; --lvm) {
    int m = 1 << lvm;
    int mh = m >> 1;
    for (int r = 0; r < n; r += m) rep(j, mh) A[r + j] += A[r + mh + j];
  }
}

template <typename T>
void sum(T* A, int lv, T* res) {
  int total = 1 << lv;
  int pos = 0;
  rep (i, total) {
    res[pos++] = A[i];
    int f = i;
    int t = 1;
    while (f) {
      int r = f & -f;
      int ofs = offsets[i ^ r];
      rep(j, t) res[pos + j] = res[ofs + j] - res[pos - t + j];
      pos += t;
      t <<= 1;
      f ^= r;
    }
  }
}

int ctz(int n) {
  return __builtin_ctz(n);
}

int pop_count(int n) {
  return __builtin_popcount(n);
}

int main() {
  int R, C; scanf("%d %d", &R, &C);
  int r;
  rep(i, R) rep(j, C) scanf("%d", &r), P[i][j] = r / 100.;
  rep(i, R) rep(j, C) scanf("%d", &S[i][j]), S[i][j] = 4 - S[i][j];

  int total = 1 << C;

  int ofs = 0;
  rep(i, total) offsets[i] = ofs, ofs += 1 << pop_count(i);

  auto* curr = dp[0], *next = dp[1];
  fill(curr, curr + total, Pair(0, 0));
  curr[0] = Pair(0., 1.);

  arith_transform_plus(curr, C);
  sum(curr, C, cumu);

  rep(y, R) {
    fill(next, next + total, Pair(0, 0));
    rep(s2, total) {
      double p = 1.0;
      rep(x, C) p *= (s2 & (1 << x)) ? P[y][x] : 1. - P[y][x];

      if (p == 0) continue;

      auto s1 = s2;
      int ofs = offsets[s1] + (1 << pop_count(s2)) - 1;

      int points_back[N] = {};
      int points[N];

      rep(x, C) if (s2 & (1 << x)) points_back[x] = S[y][x];

      do {
        if (cumu[ofs].second) {
          copy(points_back, points_back + C, points);
          auto s = s1;
          while (s) {
            auto t = s & -s;
            points[ctz(t)] += 1;
            s ^= t;
          }
          for (int x = 0; x < C - 1; ++x) if (points[x] >= 4) points[x + 1] += 1;
          for (int x = C - 1; x > 0; --x) if (points[x] >= 4) points[x - 1] += 1;
          int nstate = 0;
          rep(x, C) if (points[x] >= 4) {
            nstate |= 1 << x;
          }
          next[nstate] += 
            Pair(p * (cumu[ofs].first + pop_count(nstate) * cumu[ofs].second),
                 p * cumu[ofs].second);
        }
        s1 = (s1 - 1) & s2;
        ofs -= 1;
      } while (s1 != s2);
    }
    swap(curr, next);
    arith_transform_plus(curr, C);
    sum(curr, C, cumu);
  }
  printf("%.12f\n", cumu[0].first);
  return 0;
}
0