結果
| 問題 | No.309 シャイな人たち (1) |
| コンテスト | |
| ユーザー |
Min_25
|
| 提出日時 | 2015-12-02 13:51:39 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 153 ms / 4,000 ms |
| コード長 | 3,404 bytes |
| 記録 | |
| コンパイル時間 | 587 ms |
| コンパイル使用メモリ | 67,688 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-09-14 07:52:01 |
| 合計ジャッジ時間 | 2,380 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 13 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:86:18: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
86 | int R, C; scanf("%d %d", &R, &C);
| ~~~~~^~~~~~~~~~~~~~~~~
main.cpp:88:28: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
88 | rep(i, R) rep(j, C) scanf("%d", &r), P[i][j] = r / 100.;
| ~~~~~^~~~~~~~~~
main.cpp:89:28: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
89 | rep(i, R) rep(j, C) scanf("%d", &S[i][j]), S[i][j] = 4 - S[i][j];
| ~~~~~^~~~~~~~~~~~~~~~
ソースコード
#include <cstdio>
#include <cassert>
#include <algorithm>
#include <iostream>
#include <vector>
#include <queue>
#include <utility>
using namespace std;
using uint64 = unsigned long long;
#define rep(i, n) for (int i = 0; i < int(n); ++i)
constexpr int ipow(int base, int e, int res = 1) {
return e == 0 ? res
: (e & 1) ? ipow(base * base, e / 2, res * base)
: ipow(base * base, e / 2, res);
}
using Pair = pair<double, double>;
Pair operator + (const Pair& lhs, const Pair& rhs) {
return Pair(lhs.first + rhs.first, lhs.second + rhs.second);
}
// precision ...
Pair operator - (const Pair& lhs, const Pair& rhs) {
return Pair(lhs.first - rhs.first, lhs.second - rhs.second);
}
Pair& operator += (Pair& lhs, const Pair& rhs) {
return lhs = lhs + rhs;
}
constexpr int N = 11;
constexpr int three_N = ipow(3, N);
double P[N][N];
int S[N][N];
Pair dp[2][1 << N];
Pair cumu[three_N];
int offsets[1 << N];
template <typename T>
void arith_transform_plus(T* A, int lvn) {
int n = 1 << lvn;
reverse(A, A + n);
for (int lvm = lvn; lvm > 0; --lvm) {
int m = 1 << lvm;
int mh = m >> 1;
for (int r = 0; r < n; r += m) rep(j, mh) A[r + j] += A[r + mh + j];
}
}
template <typename T>
void sum(T* A, int lv, T* res) {
int total = 1 << lv;
int pos = 0;
rep (i, total) {
res[pos++] = A[i];
int f = i;
int t = 1;
while (f) {
int r = f & -f;
int ofs = offsets[i ^ r];
rep(j, t) res[pos + j] = res[ofs + j] - res[pos - t + j];
pos += t;
t <<= 1;
f ^= r;
}
}
}
int ctz(int n) {
return __builtin_ctz(n);
}
int pop_count(int n) {
return __builtin_popcount(n);
}
int main() {
int R, C; scanf("%d %d", &R, &C);
int r;
rep(i, R) rep(j, C) scanf("%d", &r), P[i][j] = r / 100.;
rep(i, R) rep(j, C) scanf("%d", &S[i][j]), S[i][j] = 4 - S[i][j];
int total = 1 << C;
int ofs = 0;
rep(i, total) offsets[i] = ofs, ofs += 1 << pop_count(i);
auto* curr = dp[0], *next = dp[1];
fill(curr, curr + total, Pair(0, 0));
curr[0] = Pair(0., 1.);
arith_transform_plus(curr, C);
sum(curr, C, cumu);
rep(y, R) {
fill(next, next + total, Pair(0, 0));
rep(s2, total) {
double p = 1.0;
rep(x, C) p *= (s2 & (1 << x)) ? P[y][x] : 1. - P[y][x];
if (p == 0) continue;
auto s1 = s2;
int ofs = offsets[s1] + (1 << pop_count(s2)) - 1;
int points_back[N] = {};
int points[N];
rep(x, C) if (s2 & (1 << x)) points_back[x] = S[y][x];
do {
if (cumu[ofs].second) {
copy(points_back, points_back + C, points);
auto s = s1;
while (s) {
auto t = s & -s;
points[ctz(t)] += 1;
s ^= t;
}
for (int x = 0; x < C - 1; ++x) if (points[x] >= 4) points[x + 1] += 1;
for (int x = C - 1; x > 0; --x) if (points[x] >= 4) points[x - 1] += 1;
int nstate = 0;
rep(x, C) if (points[x] >= 4) {
nstate |= 1 << x;
}
next[nstate] +=
Pair(p * (cumu[ofs].first + pop_count(nstate) * cumu[ofs].second),
p * cumu[ofs].second);
}
s1 = (s1 - 1) & s2;
ofs -= 1;
} while (s1 != s2);
}
swap(curr, next);
arith_transform_plus(curr, C);
sum(curr, C, cumu);
}
printf("%.12f\n", cumu[0].first);
return 0;
}
Min_25