結果

問題 No.1339 循環小数
ユーザー FF256grhyFF256grhy
提出日時 2021-02-20 23:40:02
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 7,773 bytes
コンパイル時間 2,080 ms
コンパイル使用メモリ 212,984 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-18 23:10:01
合計ジャッジ時間 6,684 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 AC 37 ms
5,376 KB
testcase_32 AC 38 ms
5,376 KB
testcase_33 RE -
testcase_34 RE -
testcase_35 AC 35 ms
5,376 KB
testcase_36 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using LL = long long int;
#define incII(i, l, r) for(LL i = (l)    ; i <= (r); i++)
#define incIX(i, l, r) for(LL i = (l)    ; i <  (r); i++)
#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)
#define incXX(i, l, r) for(LL i = (l) + 1; i <  (r); i++)
#define decII(i, l, r) for(LL i = (r)    ; i >= (l); i--)
#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)
#define decXI(i, l, r) for(LL i = (r)    ; i >  (l); i--)
#define decXX(i, l, r) for(LL i = (r) - 1; i >  (l); i--)
#define inc(i, n)  incIX(i, 0, n)
#define dec(i, n)  decIX(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec1(i, n) decII(i, 1, n)
auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };
auto inIX = [](auto x, auto l, auto r) { return (l <= x && x <  r); };
auto inXI = [](auto x, auto l, auto r) { return (l <  x && x <= r); };
auto inXX = [](auto x, auto l, auto r) { return (l <  x && x <  r); };
auto setmin   = [](auto & a, auto b) { return (b <  a ? a = b, true : false); };
auto setmax   = [](auto & a, auto b) { return (b >  a ? a = b, true : false); };
auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };
auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define MT make_tuple
#define FI first
#define SE second
#define FR front()
#define BA back()
#define ALL(c) c.begin(), c.end()
#define RALL(c) c.rbegin(), c.rend()
#define RV(c) reverse(ALL(c))
#define SC static_cast
#define SI(c) SC<int>(c.size())
#define SL(c) SC<LL >(c.size())
#define RF(e, c) for(auto & e: c)
#define SF(c, ...) for(auto & [__VA_ARGS__]: c)
#define until(e) while(! (e))
#define if_not(e) if(! (e))
#define ef else if
#define UR assert(false)
auto * IS = & cin;
auto * OS = & cout;
array<string, 3> SEQ = { "", " ", "" };
// input
template<typename T> T in() { T a; (* IS) >> a; return a; }
// input: tuple
template<int I, typename U> void tin_(istream & is, U & t) {
	if constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }
}
template<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }
template<typename ... T> auto tin() { return in<tuple<T ...>>(); }
// input: array
template<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }
template<typename T, size_t N> auto ain() { return in<array<T, N>>(); }
// input: multi-dimensional vector
template<typename T> T vin() { T v; (* IS) >> v; return v; }
template<typename T, typename N, typename ... M> auto vin(N n, M ... m) {
	vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;
}
// input: multi-column (tuple<vector>)
template<typename U, int I> void colin_([[maybe_unused]] U & t) { }
template<typename U, int I, typename A, typename ... B> void colin_(U & t) {
	get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);
}
template<typename ... T> auto colin(int n) {
	tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;
}
// output
void out_([[maybe_unused]] string s) { }
template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }
template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }
auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };
auto out  = [](auto ... a) { outF("", " " , "\n", a ...); };
auto outS = [](auto ... a) { outF("", " " , " " , a ...); };
auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); };
auto outN = [](auto ... a) { outF("", ""  , ""  , a ...); };
// output: multi-dimensional vector
template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {
	os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]);
}
template<typename T> void vout_(T && v) { (* OS) << v; }
template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {
	inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); }
}
template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }
template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS)      << flush; }

// ---- ----

template<int N> class DynModInt {
private:
	static LL M;
	LL v;
	pair<LL, LL> ext_gcd(LL a, LL b) {
		if(b == 0) { assert(a == 1); return { 1, 0 }; }
		auto p = ext_gcd(b, a % b);
		return { p.SE, p.FI - (a / b) * p.SE };
	}
public:
	DynModInt() { v = 0; }
	DynModInt(LL vv) { assert(M > 0); v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } }
	static LL & mod() { return M; }
	LL val() { return v; }
	DynModInt inv() { return ext_gcd(M, v).SE; }
	DynModInt exp(LL b) {
		DynModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; }
		while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; }
		return p;
	}
	friend bool        operator< (DynModInt   a, DynModInt   b) { return (a.v <  b.v); }
	friend bool        operator> (DynModInt   a, DynModInt   b) { return (a.v >  b.v); }
	friend bool        operator<=(DynModInt   a, DynModInt   b) { return (a.v <= b.v); }
	friend bool        operator>=(DynModInt   a, DynModInt   b) { return (a.v >= b.v); }
	friend bool        operator==(DynModInt   a, DynModInt   b) { return (a.v == b.v); }
	friend bool        operator!=(DynModInt   a, DynModInt   b) { return (a.v != b.v); }
	friend DynModInt   operator+ (DynModInt   a               ) { return DynModInt(+a.v); }
	friend DynModInt   operator- (DynModInt   a               ) { return DynModInt(-a.v); }
	friend DynModInt   operator+ (DynModInt   a, DynModInt   b) { return DynModInt(a.v + b.v); }
	friend DynModInt   operator- (DynModInt   a, DynModInt   b) { return DynModInt(a.v - b.v); }
	friend DynModInt   operator* (DynModInt   a, DynModInt   b) { return DynModInt(a.v * b.v); }
	friend DynModInt   operator/ (DynModInt   a, DynModInt   b) { return a * b.inv(); }
	friend DynModInt   operator^ (DynModInt   a, LL          b) { return a.exp(b); }
	friend DynModInt & operator+=(DynModInt & a, DynModInt   b) { return (a = a + b); }
	friend DynModInt & operator-=(DynModInt & a, DynModInt   b) { return (a = a - b); }
	friend DynModInt & operator*=(DynModInt & a, DynModInt   b) { return (a = a * b); }
	friend DynModInt & operator/=(DynModInt & a, DynModInt   b) { return (a = a / b); }
	friend DynModInt & operator^=(DynModInt & a, LL          b) { return (a = a ^ b); }
	friend istream   & operator>>(istream   & s, DynModInt & b) { s >> b.v; b = DynModInt(b.v); return s; }
	friend ostream   & operator<<(ostream   & s, DynModInt   b) { return (s << b.v); }
};
template<int N> LL DynModInt<N>::M = 0;

// ----

using DMI = DynModInt<0>;

vector<pair<LL, LL>> prime_factorization(LL x) {
	assert(x > 0);
	vector<pair<LL, LL>> f;
	for(LL i = 2; i <= x; i++) {
		if(i * i > x) { i = x; }
		if(x % i == 0) {
			f.EB(i, 0);
			while(x % i == 0) { f.back().SE++; x /= i; }
		}
	}
	return f;
}

vector<LL> divisors(LL x) {
	auto pf = prime_factorization(x);
	vector<LL> d = { 1 };
	for(auto e: pf) {
		int ds = d.size();
		inc(i, ds) {
			LL v = d[i];
			inc(j, e.SE) { v *= e.FI; d.PB(v); }
		}
	}
	sort(ALL(d));
	return d;
}

LL phi(LL x) {
	auto pf = prime_factorization(x);
	LL ans = 1;
	SF(pf, p, e) { ans *= p - 1; }
	return ans;
}

int main() {
	auto t = in<int>();
	inc(tt, t) {
		auto n = in<int>();
		while(n % 2 == 0) { n /= 2; }
		while(n % 5 == 0) { n /= 5; }
		DMI::mod() = n;
		auto D = divisors(phi(n));
		bool f = false;
		RF(d, D) {
			if((DMI(10) ^ d) == 1) { out(d); f = true; break; }
		}
		assert(f);
	}
}
0