結果
問題 | No.1409 Simple Math in yukicoder |
ユーザー | fastmath |
提出日時 | 2021-02-26 22:30:33 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 161 ms / 2,000 ms |
コード長 | 3,859 bytes |
コンパイル時間 | 1,558 ms |
コンパイル使用メモリ | 139,524 KB |
最終ジャッジ日時 | 2025-01-19 05:54:00 |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 58 |
ソースコード
#include <iostream> #include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> #include <vector> #include <set> #include <map> #include <unordered_set> #include <unordered_map> #include <queue> #include <ctime> #include <cassert> #include <complex> #include <string> #include <cstring> #include <chrono> #include <random> #include <bitset> #include <fstream> using namespace std; #define int long long #define ii pair <int, int> #define app push_back #define all(a) a.begin(), a.end() #define bp __builtin_popcountll #define ll long long #define mp make_pair #define x first #define y second #define Time (double)clock()/CLOCKS_PER_SEC #define debug(x) std::cerr << #x << ": " << x << '\n'; #define FOR(i, n) for (int i = 0; i < n; ++i) #define pb push_back #define trav(a, x) for (auto& a : x) using vi = vector<int>; template <typename T> std::ostream& operator <<(std::ostream& output, const pair <T, T> & data) { output << "(" << data.x << "," << data.y << ")"; return output; } template <typename T> std::ostream& operator <<(std::ostream& output, const std::vector<T>& data) { for (const T& x : data) output << x << " "; return output; } ll div_up(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // divide a by b rounded up ll div_down(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // divide a by b rounded down ll math_mod(ll a, ll b) { return a - b * div_down(a, b); } #define tcT template<class T #define tcTU tcT, class U tcT> using V = vector<T>; tcT> void re(V<T>& x) { trav(a, x) cin >> a; } tcT> bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; } // set a = min(a,b) tcT> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; } ll gcd(ll a, ll b) { while (b) { tie(a, b) = mp(b, a % b); } return a; } int powmod(int a, int b, int p) { int res = 1; while (b > 0) { if (b & 1) { res = res * a % p; } a = a * a % p; b >>= 1; } return res; } // Finds the primitive root modulo p int generator(int p) { vector<int> fact; int phi = p-1, n = phi; for (int i = 2; i * i <= n; ++i) { if (n % i == 0) { fact.push_back(i); while (n % i == 0) n /= i; } } if (n > 1) fact.push_back(n); for (int res = 2; res <= p; ++res) { bool ok = true; for (int factor : fact) { if (powmod(res, phi / factor, p) == 1) { ok = false; break; } } if (ok) return res; } return -1; } // This program finds all numbers x such that x^k = a (mod n) void solve(int n, int k) { int a = 1; int g = generator(n); // Baby-step giant-step discrete logarithm algorithm int sq = (int) sqrt (n + .0) + 1; vector<pair<int, int>> dec(sq); for (int i = 1; i <= sq; ++i) dec[i-1] = {powmod(g, i * sq * k % (n - 1), n), i}; sort(dec.begin(), dec.end()); int any_ans = -1; for (int i = 0; i < sq; ++i) { int my = powmod(g, i * k % (n - 1), n) * a % n; auto it = lower_bound(dec.begin(), dec.end(), make_pair(my, 0ll)); if (it != dec.end() && it->first == my) { any_ans = it->second * sq - i; break; } } if (any_ans == -1) { assert(0); } // Print all possible answers int delta = (n-1) / gcd(k, n-1); vector<int> ans; for (int cur = any_ans % delta; cur < n-1; cur += delta) ans.push_back(powmod(g, cur, n)); sort(ans.begin(), ans.end()); cout << ans << endl; } signed main() { #ifdef ONLINE_JUDGE #define endl '\n' ios_base::sync_with_stdio(0); cin.tie(0); #endif int t; cin >> t; while (t--) { int v, x; cin >> v >> x; solve(v * x + 1, x); } }