結果
問題 | No.1409 Simple Math in yukicoder |
ユーザー |
👑 ![]() |
提出日時 | 2021-03-02 03:37:46 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 52 ms / 2,000 ms |
コード長 | 3,239 bytes |
コンパイル時間 | 2,469 ms |
コンパイル使用メモリ | 202,328 KB |
最終ジャッジ日時 | 2025-01-19 09:09:53 |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 58 |
ソースコード
#define _USE_MATH_DEFINES#include <bits/stdc++.h>using namespace std;#define FOR(i,m,n) for(int i=(m);i<(n);++i)#define REP(i,n) FOR(i,0,n)#define ALL(v) (v).begin(),(v).end()using ll = long long;constexpr int INF = 0x3f3f3f3f;constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;constexpr double EPS = 1e-8;constexpr int MOD = 1000000007;// constexpr int MOD = 998244353;constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }struct IOSetup {IOSetup() {std::cin.tie(nullptr);std::ios_base::sync_with_stdio(false);std::cout << fixed << setprecision(20);}} iosetup;long long euler_phi(long long n) {assert(n >= 1);long long res = n;for (long long i = 2; i * i <= n; ++i) {if (n % i == 0) {res -= res / i;while (n % i == 0) n /= i;}}if (n > 1) res -= res / n;return res;}template <typename T>std::vector<std::pair<T, int>> prime_factorization(T n) {std::vector<std::pair<T, int>> res;for (T i = 2; i * i <= n; ++i) {if (n % i != 0) continue;int exponent = 0;while (n % i == 0) {++exponent;n /= i;}res.emplace_back(i, exponent);}if (n != 1) res.emplace_back(n, 1);return res;}long long mod_pow(long long base, long long exponent, int mod) {base %= mod;long long res = 1;while (exponent > 0) {if (exponent & 1) (res *= base) %= mod;(base *= base) %= mod;exponent >>= 1;}return res;}bool is_primitive_root(long long root, long long m) {if ((root %= m) < 0) root += m;if (std::__gcd(root, m) > 1) return false;long long phi = euler_phi(m);for (const std::pair<long long, long long> &pr : prime_factorization(phi)) {if (mod_pow(root, phi / pr.first, m) == 1) return false;}return true;}struct Xor128 {int rand() {unsigned int t = x ^ (x << 11);x = y; y = z; z = w; w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));return static_cast<int>(w);}int rand(int ub) {int res = rand() % ub;return res < 0 ? res + ub : res;}int rand(int lb, int ub) { return lb + rand(ub - lb); }long long randll() {unsigned long long res = static_cast<unsigned long long>(rand()) << 32;return static_cast<long long>(res | rand());}long long randll(long long ub) {long long res = randll() % ub;return res < 0 ? res + ub : res;}long long randll(long long lb, long long ub) { return lb + randll(ub - lb); }private:unsigned int x = 123456789, y = 362436069, z = 521288629, w = static_cast<unsigned int>(std::time(nullptr));} xor128;void solve() {int v, x; cin >> v >> x;int p = v * x + 1, root = xor128.rand(1, p);while (!is_primitive_root(root, p)) root = xor128.rand(1, p);vector<int> ans(x, 1);FOR(i, 1, x) ans[i] = ans[i - 1] * mod_pow(root, v, p) % p;sort(ALL(ans));REP(i, x) cout << ans[i] << " \n"[i + 1 == x];}int main() {int t; cin >> t;while (t--) solve();return 0;}