結果
問題 | No.644 G L C C D M |
ユーザー |
![]() |
提出日時 | 2021-03-03 20:19:33 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 52 ms / 2,000 ms |
コード長 | 733 bytes |
コンパイル時間 | 376 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 68,224 KB |
最終ジャッジ日時 | 2024-10-03 09:48:12 |
合計ジャッジ時間 | 2,619 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 27 |
ソースコード
def Eratosthenes(N): #N以下の素数のリストを返す N+=1 is_prime_list = [True]*N m = int(N**0.5)+1 for i in range(3,m,2): if is_prime_list[i]: is_prime_list[i*i::2*i]=[False]*((N-i*i-1)//(2*i)+1) return [2] + [i for i in range(3,N,2) if is_prime_list[i]] def mobius_gcd(a,primes): n = len(a) for p in primes: for i in range(1,n): if i*p >= n: break a[i] -= a[p*i] a[i] %= MOD n,m = map(int,input().split()) MOD = 10**9+7 fac = [1]*(n+1) for i in range(1,n+1): fac[i] = fac[i-1]*i%MOD dp = [0]*(n+1) for i in range(1,n+1): dp[i] = n//i*(n//i-1)%MOD*fac[n-2]%MOD mobius_gcd(dp,Eratosthenes(n)) print(dp[m] if m <= n else 0)