結果

問題 No.1356 Split Tile2
ユーザー jelljell
提出日時 2021-03-04 02:05:42
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 34 ms / 2,000 ms
コード長 40,629 bytes
コンパイル時間 3,575 ms
コンパイル使用メモリ 274,872 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-04 00:57:50
合計ジャッジ時間 5,107 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 1 ms
6,820 KB
testcase_07 AC 1 ms
6,816 KB
testcase_08 AC 2 ms
6,820 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 1 ms
6,820 KB
testcase_11 AC 2 ms
6,820 KB
testcase_12 AC 3 ms
6,816 KB
testcase_13 AC 5 ms
6,820 KB
testcase_14 AC 34 ms
6,816 KB
testcase_15 AC 32 ms
6,816 KB
testcase_16 AC 17 ms
6,816 KB
testcase_17 AC 16 ms
6,820 KB
testcase_18 AC 2 ms
6,820 KB
testcase_19 AC 16 ms
6,820 KB
testcase_20 AC 16 ms
6,816 KB
testcase_21 AC 16 ms
6,816 KB
testcase_22 AC 4 ms
6,816 KB
testcase_23 AC 17 ms
6,816 KB
testcase_24 AC 16 ms
6,816 KB
testcase_25 AC 9 ms
6,816 KB
testcase_26 AC 16 ms
6,816 KB
testcase_27 AC 9 ms
6,816 KB
testcase_28 AC 16 ms
6,820 KB
testcase_29 AC 16 ms
6,820 KB
testcase_30 AC 8 ms
6,816 KB
testcase_31 AC 3 ms
6,816 KB
testcase_32 AC 33 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "other/y.cc"
// #undef _GLIBCXX_DEBUG
// #define NDEBUG
#include <bits/extc++.h>

#line 2 "Library/dev/fraction.hpp"

/**
 * @file rational.hpp
 * @brief Rational
 */

namespace workspace {

template <class _Tp> struct rational {
  _Tp __num{0}, __den{1};

  constexpr rational() = default;

  constexpr rational(const _Tp &__x) : __num(__x) {}

  constexpr rational(const _Tp &__x, const _Tp __y) : __num(__x), __den(__y) {}

  constexpr rational operator+() const noexcept { return *this; }

  constexpr rational operator-() const noexcept { return {-__num, __den}; }

  constexpr rational operator+(const rational &__x) const noexcept {
    return {__num * __x.__den + __x.__num * __den, __den * __x.__den};
  }

  constexpr rational operator-(const rational &__x) const noexcept {
    return {__num * __x.__den - __x.__num * __den, __den * __x.__den};
  }

  constexpr rational operator+=(const rational &__x) noexcept {
    (__num *= __x.__den) += __den * __x.__num;
    __den *= __x.__den;
    return *this;
  }

  constexpr rational operator-=(const rational &__x) noexcept {
    (__num *= __x.__den) -= __den * __x.__num;
    __den *= __x.__den;
    return *this;
  }

  constexpr bool operator==(const rational &__x) const noexcept {
    return __num == __x.__num && __den == __x.den;
  }

  constexpr bool operator!=(const rational &__x) const noexcept {
    return __num != __x.__num || __den != __x.den;
  }

  constexpr bool operator<(const rational &__x) const noexcept;

 private:
  constexpr void normalize();
};

}  // namespace workspace
#line 2 "Library/src/algebra/polynomial.hpp"

/**
 * @file polynomial.hpp
 * @brief Polynomial
 */

#line 11 "Library/src/algebra/polynomial.hpp"

#line 2 "Library/src/algebra/ntt.hpp"

/**
 * @file ntt.hpp
 * @brief Number Theoretic Transform
 * @date 2021-02-20
 *
 *
 */

#line 2 "Library/src/number_theory/ext_gcd.hpp"

/**
 * @file ext_gcd.hpp
 * @brief Extended Euclidean Algorithm
 */

#line 9 "Library/src/number_theory/ext_gcd.hpp"

#line 2 "Library/src/utils/sfinae.hpp"

/**
 * @file sfinae.hpp
 * @brief SFINAE
 */

#line 10 "Library/src/utils/sfinae.hpp"
#include <type_traits>

#ifndef __INT128_DEFINED__

#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif

#endif

namespace std {

#if __INT128_DEFINED__

template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };

template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };

#endif

}  // namespace std

namespace workspace {

template <class Tp, class... Args> struct variadic_front { using type = Tp; };

template <class... Args> struct variadic_back;

template <class Tp> struct variadic_back<Tp> { using type = Tp; };

template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
  using type = typename variadic_back<Args...>::type;
};

template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;

/**
 * @brief Return type of subscripting ( @c [] ) access.
 */
template <class _Tp>
using subscripted_type =
    typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;

template <class Container>
using element_type = typename std::decay<decltype(
    *std::begin(std::declval<Container&>()))>::type;

template <class _Tp, class = std::nullptr_t>
struct has_begin : std::false_type {};

template <class _Tp>
struct has_begin<_Tp, decltype(std::begin(std::declval<_Tp>()), nullptr)>
    : std::true_type {};

template <class _Tp, class = std::nullptr_t>
struct has_mod : std::false_type {};

template <class _Tp>
struct has_mod<_Tp, decltype(_Tp::mod, nullptr)> : std::true_type {};

template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
    _Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
    : std::true_type {};

#if __INT128_DEFINED__

template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};

#endif

#if __cplusplus >= 201402

template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;

#endif

template <typename _Tp, typename = void> struct multiplicable_uint {
  using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
    _Tp,
    typename std::enable_if<(2 < sizeof(_Tp)) &&
                            (!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
  using type = uint_least64_t;
};

#if __INT128_DEFINED__

template <typename _Tp>
struct multiplicable_uint<_Tp,
                          typename std::enable_if<(4 < sizeof(_Tp))>::type> {
  using type = __uint128_t;
};

#endif

template <typename _Tp> struct multiplicable_int {
  using type =
      typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};

}  // namespace workspace
#line 11 "Library/src/number_theory/ext_gcd.hpp"

namespace workspace {

/**
 * @param __a Integer
 * @param __b Integer
 * @return Pair of integers (x, y) s.t. ax + by = g = gcd(a, b), 0 <= x <
 * |b/g|, -|a/g| < y <= 0. Return (0, 0) if (a, b) = (0, 0).
 */
template <typename _T1, typename _T2> constexpr auto ext_gcd(_T1 __a, _T2 __b) {
  static_assert(is_integral_ext<_T1>::value);
  static_assert(is_integral_ext<_T2>::value);

  using result_type = typename std::make_signed<
      typename std::common_type<_T1, _T2>::type>::type;

  result_type a{__a}, b{__b}, p{1}, q{}, r{}, s{1};

  // Euclidean algorithm
  while (b) {
    result_type t = a / b;
    r ^= p ^= r ^= p -= t * r;
    s ^= q ^= s ^= q -= t * s;
    b ^= a ^= b ^= a -= t * b;
  }

  // Normalize
  if (a < 0) p = -p, q = -q;
  if (p < 0) p += __b / a, q -= __a / a;

  return std::make_pair(p, q);
}

}  // namespace workspace
#line 2 "Library/src/number_theory/primitive_root.hpp"

/**
 * @file primitive_root.hpp
 * @brief Primitive Root
 * @date 2020-12-28
 */

#line 10 "Library/src/number_theory/primitive_root.hpp"

namespace workspace {

/**
 * @brief Compile time primitive root.
 *
 * @tparam __mod Positive integer
 * @return Minimum positive one if it exists. Otherwise 0.
 */
template <class Tp>
constexpr typename std::enable_if<(is_integral_ext<Tp>::value), Tp>::type
primitive_root(const Tp __mod) noexcept {
  assert(__mod > 0);
  using int_type = typename multiplicable_uint<Tp>::type;

  int_type __r = __mod, __p[16] = {}, *__q = __p;
  for (int_type __i = 2; __i <= __r / __i; ++__i) {
    if (__r % __i) continue;
    *__q++ = __i;
    while (!(__r % __i)) __r /= __i;
  }
  if (__r != 1) *__q++ = __r;

  int_type __tot = __mod;
  for (__q = __p; *__q; *__q++ = 0) (__tot /= *__q) *= *__q - 1;
  __r = __tot, __q = __p + 1, __p[0] = 1;
  for (int_type __i = 2; __i <= __r / __i; ++__i) {
    if (__r % __i) continue;
    *__q++ = __i;
    while (!(__r % __i)) __r /= __i;
  }
  if (__r != 1) *__q++ = __r;

  for (Tp __r = 1; __r != __mod; ++__r) {
    auto __cnt = 0;
    for (__q = __p; *__q; ++__q) {
      int_type __w = 1;
      for (int_type __e = __tot / *__q, __x = __r; __e;
           __e >>= 1, (__x *= __x) %= __mod)
        if (__e & 1) (__w *= __x) %= __mod;
      if (__w == 1 && ++__cnt > 1) break;
    }
    if (__cnt == 1) return __r;
  }

  return 0;
};

}  // namespace workspace
#line 13 "Library/src/algebra/ntt.hpp"

namespace workspace {

namespace ntt_impl {

/**
 * @see
 * https://github.com/atcoder/ac-library/blob/master/atcoder/convolution.hpp
 */

template <class _Tp> struct __coef {
  _Tp sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]

  constexpr __coef() : sum_e{} {
    if (_Tp::mod < 2) return;

    int cnt2 = __builtin_ctz(_Tp::mod - 1);
    _Tp e = 1;
    {
      auto p = (_Tp::mod - 1) >> cnt2;
      _Tp w = primitive_root(_Tp::mod);
      while (p) {
        if (p & 1) e *= w;
        p >>= 1;
        w *= w;
      }
    }

    _Tp ie = ext_gcd(decltype(_Tp::mod)(e), _Tp::mod).first;
    _Tp es[30] = {}, ies[30] = {};  // es[i]^(2^(2+i)) == 1
    for (int i = cnt2; i >= 2; i--) {
      // e^(2^i) == 1
      es[i - 2] = e;
      ies[i - 2] = ie;
      e *= e;
      ie *= ie;
    }

    _Tp now = 1;
    for (int i = 0; i <= cnt2 - 2; i++) {
      sum_e[i] = es[i] * now;
      now *= ies[i];
    }
  }
};

template <class _Tp> struct __icoef {
  _Tp sum_ie[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]

  constexpr __icoef() : sum_ie{} {
    if (_Tp::mod < 2) return;

    int cnt2 = __builtin_ctz(_Tp::mod - 1);
    _Tp e = 1;
    {
      auto p = (_Tp::mod - 1) >> cnt2;
      _Tp w = primitive_root(_Tp::mod);
      while (p) {
        if (p & 1) e *= w;
        p >>= 1;
        w *= w;
      }
    }

    _Tp ie = ext_gcd(decltype(_Tp::mod)(e), _Tp::mod).first;
    _Tp es[30] = {}, ies[30] = {};  // es[i]^(2^(2+i)) == 1
    for (int i = cnt2; i >= 2; i--) {
      // e^(2^i) == 1
      es[i - 2] = e;
      ies[i - 2] = ie;
      e *= e;
      ie *= ie;
    }

    _Tp now = 1;
    for (int i = 0; i <= cnt2 - 2; i++) {
      sum_ie[i] = ies[i] * now;
      now *= es[i];
    }
  }
};

template <class _Tp> struct __ipow2 {
  _Tp __ip2[30];
  constexpr __ipow2() : __ip2{1, (1 + _Tp::mod) / 2} {
    for (size_t __i = 1; __i + 1 != std::size(__ip2); ++__i)
      __ip2[__i + 1] = __ip2[__i] * __ip2[1];
  }
};

template <class _FIter>
constexpr void ntt(_FIter __first, _FIter __last) noexcept {
  using value_type = typename std::decay<decltype(*__first)>::type;
  constexpr __coef<value_type> _;

  auto __h = __builtin_ctz(std::distance(__first, __last));

  for (ptrdiff_t __p = 1 << __h; __p >>= 1;) {
    value_type now = -1;
    auto __l = __first;

    for (size_t __s = 1 << __h; __l != __last;
         now *= _.sum_e[__builtin_ctz(--__s)]) {
      auto __r = __l + __p;

      for (auto __mid = __r; __l != __mid; ++__l, ++__r) {
        auto __tmp = *__l;
        *__l -= *__r *= now;
        *__r += __tmp;
      }

      __l = __r;
    }
  }
}

template <class _A> constexpr void ntt(_A &a) noexcept {
  ntt(std::begin(a), std::end(a));
}

template <class _FIter>
constexpr void intt(_FIter __first, _FIter __last) noexcept {
  using value_type = typename std::decay<decltype(*__first)>::type;
  constexpr __icoef<value_type> _;

  auto __h = __builtin_ctz(std::distance(__first, __last));

  for (ptrdiff_t __p = 1; __p >> __h ^ 1; __p <<= 1) {
    value_type inow = 1;
    auto __l = __first;

    for (size_t __s = 1 << __h; __l != __last;
         inow *= _.sum_ie[__builtin_ctz(--__s)]) {
      auto __r = __l + __p;

      for (auto __mid = __r; __l != __mid; ++__l, ++__r) {
        auto __tmp = (*__l - *__r) * inow;
        *__l += *__r;
        *__r = __tmp;
      }

      __l = __r;
    }
  }

  constexpr __ipow2<value_type> __;
  while (__first != __last) *--__last *= __.__ip2[__h];
}  // namespace ntt_impl

template <class _A> constexpr void intt(_A &a) noexcept {
  intt(std::begin(a), std::end(a));
}

}  // namespace ntt_impl

using ntt_impl::intt;
using ntt_impl::ntt;

}  // namespace workspace
#line 14 "Library/src/algebra/polynomial.hpp"

namespace workspace {

/**
 * @brief Polynomial class.
 *
 * @tparam _Tp Ring structure
 * @tparam _Conv_threshold Threshold for convolution method
 */
template <class _Tp, std::size_t _Conv_threshold = 64>
class polynomial : public std::vector<_Tp> {
  using vector = std::vector<_Tp>;
  using poly = polynomial;

 public:
  using vector::vector;
  using size_type = typename vector::size_type;

 protected:
  void _erase_leading_zeros() noexcept {
    auto __i = vector::_M_impl._M_finish;
    while (__i != vector::_M_impl._M_start && *(__i - 1) == _Tp(0)) --__i;

    vector::_M_erase_at_end(__i);
  }

  void _conv_naive(const poly& __x) noexcept {
    if (__x._M_impl._M_start == __x._M_impl._M_finish)
      vector::_M_erase_at_end(vector::_M_impl._M_start);

    else {
      vector::_M_default_append(__x._M_impl._M_finish - __x._M_impl._M_start -
                                1);

      for (auto __i = vector::_M_impl._M_finish;
           __i-- != vector::_M_impl._M_start;) {
        auto __j = __i, __k = __x._M_impl._M_start;
        *__i *= *__k++;

        while (__j != vector::_M_impl._M_start && __k != __x._M_impl._M_finish)
          *__i += *--__j * *__k++;
      }
    }
  }

  void _conv_fft(poly&& __x) noexcept {
    if constexpr (has_mod<_Tp>::value)
      _conv_ntt(std::move(__x));
    else {
      assert(0);  // Not implemented!
    }
  }

  void _conv_ntt(poly&& __x) noexcept {
    size_type __n = vector::_M_impl._M_finish - vector::_M_impl._M_start,
              __m = __x._M_impl._M_finish - __x._M_impl._M_start,
              __len = 1 << (32 - __builtin_clz(__n + __m - 1));

    vector::_M_default_append(__len - __n);
    __x._M_default_append(__len - __m);

    ntt(vector::_M_impl._M_start, vector::_M_impl._M_finish);
    ntt(__x._M_impl._M_start, __x._M_impl._M_finish);

    for (auto __i = vector::_M_impl._M_start, __j = __x._M_impl._M_start;
         __i != vector::_M_impl._M_finish; ++__i, ++__j)
      *__i *= std::move(*__j);

    intt(vector::_M_impl._M_start, vector::_M_impl._M_finish);

    vector::_M_erase_at_end(vector::_M_impl._M_start + __n + __m - 1);
  }

  /**
   * @brief
   *
   * @param __x
   * @return Degree of __x.
   */
  size_type _divmod_naive(const poly& __x) {
    auto __xfin = __x._M_impl._M_finish;
    auto __xlen = __x.size();
    while (__xfin != __x._M_impl._M_start && *(__xfin - 1) == _Tp(0))
      --__xfin, --__xlen;

    assert(__xlen != 0);
    _erase_leading_zeros();

    auto __p = vector::_M_impl._M_finish;

    while (size_type(__p - vector::_M_impl._M_start) >= __xlen) {
      --__p;

      auto __src = __xfin;
      auto __dst = __p;

      *__dst /= *--__src;
      while (__src != __x._M_impl._M_start) *--__dst -= *--__src * *__p;
    }

    return std::min<size_type>(__xlen - 1, __p - vector::_M_impl._M_start);
  }

  void _div_naive(const poly& __x) { operator>>=(_divmod_naive(__x)); }

  void _div_doubling(poly&& __x) noexcept {
    _erase_leading_zeros();
    __x._erase_leading_zeros();

    auto __n = vector::_M_impl._M_finish - vector::_M_impl._M_start;
    auto __m = __x._M_impl._M_finish - __x._M_impl._M_start;

    if (__n < __m)
      vector::clear();
    else {
      assert(__m != 0);

      std::reverse(__x._M_impl._M_start, __x._M_impl._M_finish);
      __x = __x.inv(__m);
      if (size_type(__n - __m + 1) < __x.size()) __x.resize(__n - __m + 1);

      std::reverse(vector::_M_impl._M_start, vector::_M_impl._M_finish);
      vector::_M_erase_at_end(vector::_M_impl._M_finish - (__m - 1));

      operator*=(__x).resize(__n - __m + 1);
      std::reverse(vector::_M_impl._M_start, vector::_M_impl._M_finish);
    }
  }

 public:
  /**
   * @return Degree of %polynomial. Return -1 if it equals zero.
   */
  size_type deg() const noexcept { return vector::size() - 1; }

  /**
   * @param __i Not exceeding the degree.
   * @return Coefficient of x^i.
   */
  typename vector::reference operator[](size_type __i) noexcept {
    assert(__i < vector::size());
    return *(vector::_M_impl._M_start + __i);
  }

  /**
   * @param __i Not exceeding the degree.
   * @return Coefficient of x^i.
   */
  typename vector::const_reference operator[](size_type __i) const noexcept {
    assert(__i < vector::size());
    return *(vector::_M_impl._M_start + __i);
  }

  /**
   * @brief Evaluate at given point.
   */
  _Tp of(const _Tp& __a) const noexcept {
    _Tp __v(0), __p(1);

    for (auto __i = vector::_M_impl._M_start; __i != vector::_M_impl._M_finish;
         ++__i, __p *= __a)
      __v += *__i * __p;

    return __v;
  }

  operator bool() const noexcept {
    auto __first = vector::_M_impl._M_start, __last = vector::_M_impl._M_finish;

    while (__first != __last)
      if (*__first++ != _Tp(0)) return true;

    return false;
  }

  bool operator==(const poly& __x) const noexcept {
    auto __first1 = vector::_M_impl._M_start,
         __last1 = vector::_M_impl._M_finish;

    auto __first2 = __x._M_impl._M_start, __last2 = __x._M_impl._M_finish;

    if (__last1 - __first1 < __last2 - __first2) {
      while (__first1 != __last1)
        if (*__first1++ != *__first2++) return false;

      while (__first2 != __last2)
        if (*__first2++ != _Tp(0)) return false;
    }

    else {
      while (__first2 != __last2)
        if (*__first1++ != *__first2++) return false;

      while (__first1 != __last1)
        if (*__first1++ != _Tp(0)) return false;
    }

    return true;
  }

  bool operator!=(const poly& __x) const noexcept { return !operator==(__x); }

  /**
   * @brief Multiply by x^i.
   */
  poly& operator<<=(size_type __i) noexcept {
    vector::insert(vector::begin(), __i, _Tp(0));
    return *this;
  }

  /**
   * @brief Divide by x^i.
   */
  poly& operator>>=(size_type __i) noexcept {
    vector::_M_erase_at_end(
        std::move(vector::_M_impl._M_start + std::min(__i, vector::size()),
                  vector::_M_impl._M_finish, vector::_M_impl._M_start));

    return *this;
  }

  /**
   * @brief Multiply by x^i.
   */
  poly operator<<(size_type __i) const noexcept {
    return poly(*this).operator<<=(__i);
  }

  /**
   * @brief Divide by x^i.
   */
  poly operator>>(size_type __i) const noexcept {
    return poly(*this).operator>>=(__i);
  }

  poly operator+() const noexcept { return *this; }

  poly operator-() const noexcept {
    poly __x = *this;
    for (auto __i = __x._M_impl._M_start; __i != __x._M_impl._M_finish; ++__i)
      *__i = -*__i;
    return __x;
  }

  poly& operator+=(const poly& __x) noexcept {
    if (vector::size() < __x.size())
      vector::_M_default_append(__x.size() - vector::size());

    for (auto __i = vector::_M_impl._M_start, __j = __x._M_impl._M_start;
         __j != __x._M_impl._M_finish; ++__i, ++__j)
      *__i += *__j;

    _erase_leading_zeros();
    return *this;
  }

  poly& operator+=(const _Tp& __c) noexcept {
    if (__c != static_cast<_Tp>(0)) {
      if (vector::_M_impl._M_start == vector::_M_impl._M_finish)
        vector::emplace_back(__c);
      else
        *vector::_M_impl._M_start += __c, _erase_leading_zeros();
    }

    return *this;
  }

  poly& operator-=(const poly& __x) noexcept {
    if (vector::size() < __x.size())
      vector::_M_default_append(__x.size() - vector::size());

    for (auto __i = vector::_M_impl._M_start, __j = __x._M_impl._M_start;
         __j != __x._M_impl._M_finish; ++__i, ++__j)
      *__i -= *__j;

    _erase_leading_zeros();
    return *this;
  }

  poly& operator-=(const _Tp& __c) noexcept {
    if (__c != static_cast<_Tp>(0)) {
      if (vector::_M_impl._M_start == vector::_M_impl._M_finish)
        vector::emplace_back(-__c);
      else
        *vector::_M_impl._M_start -= __c, _erase_leading_zeros();
    }

    return *this;
  }

  poly& operator*=(const poly& __x) noexcept {
    std::min(vector::size(), __x.size()) > _Conv_threshold
        ? _conv_fft(poly(__x))
        : _conv_naive(this == &__x ? poly(__x) : __x);

    return *this;
  }

  poly& operator*=(poly&& __x) noexcept {
    std::min(vector::size(), __x.size()) > _Conv_threshold
        ? _conv_fft(std::move(__x))
        : _conv_naive(__x);

    return *this;
  }

  poly& operator*=(const _Tp& __c) noexcept {
    if (__c == static_cast<_Tp>(0))
      vector::_M_erase_at_end(vector::_M_impl._M_start);
    else
      for (auto __i = vector::_M_impl._M_start;
           __i != vector::_M_impl._M_finish; ++__i)
        *__i *= __c;

    return *this;
  }

  poly& operator/=(const _Tp& __c) noexcept {
    assert(__c != static_cast<_Tp>(0));

    for (auto __i = vector::_M_impl._M_start; __i != vector::_M_impl._M_finish;
         ++__i)
      *__i /= __c;

    return *this;
  }

  poly rev() const noexcept { return rev(vector::size()); }

  poly rev(size_type __n) const noexcept {
    poly __r(__n);

    auto __src = vector::_M_impl._M_start;
    auto __dst = __r._M_impl._M_finish;
    for (size_type __i = std::min(__n, vector::size()); __i; --__i)
      *--__dst = *__src++;

    return __r;
  }

  poly inv() const noexcept { return inv(vector::size()); }

  poly inv(size_type __n) const noexcept {
    assert(__n != 0);
    assert(*vector::_M_impl._M_start != _Tp(0));

    poly __x{_Tp(1) / *vector::_M_impl._M_start};
    if (__n == 1) return __x;

    for (size_type __i = 2; __i < __n; __i <<= 1) {
      poly __y(__i);
      std::copy_n(vector::_M_impl._M_start, std::min(__i, vector::size()),
                  __y._M_impl._M_start);
      __y *= __x;

      auto __p = __y._M_impl._M_start;
      *__p = 2 - *__p;
      while (++__p != __y._M_impl._M_finish) *__p = -*__p;

      (__x *= std::move(__y)).resize(__i);
    }

    poly __y = operator*(__x);

    auto __p = __y._M_impl._M_start;
    *__p = 2 - *__p;
    while (++__p != __y._M_impl._M_finish) *__p = -*__p;

    (__x *= std::move(__y)).resize(__n);

    return __x;
  }

  poly _inv(size_type __n) const noexcept {
    assert(__n != 0);
    assert(*vector::_M_impl._M_start != _Tp(0));

    size_type __len = 1;
    while (__len < __n) __len <<= 1;

    poly __x(__len), __y(__len), __z(__len);
    auto __xp = __x._M_impl._M_start, __yp = __y._M_impl._M_start,
         __zp = __z._M_impl._M_start;

    *__xp = *vector::_M_impl._M_start,
    *__yp = _Tp(1) / *vector::_M_impl._M_start;

    for (size_type __i = 1; __i != __len; __i <<= 1) {
      std::fill(std::copy_n(vector::_M_impl._M_start,
                            std::min(__i << 1, vector::size()), __xp),
                __xp + (__i << 1), _Tp(0));
      ntt(__xp, __xp + (__i << 1));

      std::fill(std::copy_n(__yp, __i, __zp), __zp + (__i << 1), _Tp(0));
      ntt(__zp, __zp + (__i << 1));

      for (size_type __j = 0; __j != (__i << 1); ++__j)
        *(__xp + __j) *= *(__zp + __j);

      intt(__xp, __xp + (__i << 1));

      std::fill(std::move(__xp + __i, __xp + (__i << 1), __xp),
                __xp + (__i << 1), _Tp(0));

      ntt(__xp, __xp + (__i << 1));

      for (size_type __j = 0; __j != (__i << 1); ++__j)
        *(__xp + __j) *= -*(__zp + __j);

      intt(__xp, __xp + (__i << 1));

      std::move(__xp, __xp + __i, __yp + __i);
    }

    __y._M_erase_at_end(__yp + __n);

    return __y;
  }

  poly& operator/=(const poly& __x) noexcept {
    if (__x.size() > _Conv_threshold)
      _div_doubling(poly(__x));
    else
      _div_naive(__x);

    return *this;
  }

  poly& operator/=(poly&& __x) noexcept {
    if (__x.size() > _Conv_threshold)
      _div_doubling(std::move(__x));
    else
      _div_naive(__x);

    return *this;
  }

  poly& operator%=(const poly& __x) noexcept {
    if (__x.size() > _Conv_threshold)
      return operator-=(__x.operator*(operator/(__x)));

    vector::resize(_divmod_naive(__x));
    return *this;
  }

  template <class _T> poly operator+(_T&& __x) const noexcept {
    return poly(*this).operator+=(std::forward<_T>(__x));
  }

  template <class _T> poly operator-(_T&& __x) const noexcept {
    return poly(*this).operator-=(std::forward<_T>(__x));
  }

  template <class _T> poly operator*(_T&& __x) const noexcept {
    return poly(*this).operator*=(std::forward<_T>(__x));
  }

  template <class _T> poly operator/(_T&& __x) const noexcept {
    return poly(*this).operator/=(std::forward<_T>(__x));
  }

  template <class _T> poly operator%(_T&& __x) const noexcept {
    return poly(*this).operator%=(std::forward<_T>(__x));
  }

  std::pair<poly, poly> divmod(const poly& __x) const {
    if (__x.size() > _Conv_threshold) return {operator/(__x), operator%(__x)};

    poly __rem(*this);
    auto __p = __rem._M_impl._M_start + __rem._divmod_naive(__x);

    poly __quot(__p, __rem._M_impl._M_finish);
    __rem._M_erase_at_end(__p);

    return {__quot, __rem};
  }

  /**
   * @brief Differentiate.
   *
   * @return Derivative.
   */
  poly deriv() const noexcept {
    if (auto __s = vector::_M_impl._M_start, __f = vector::_M_impl._M_finish;
        __s != __f) {
      poly __der(++__s, __f);

      __s = __der._M_impl._M_start, __f = __der._M_impl._M_finish;
      for (_Tp __i(1); __s != __f; ++__s, __i += 1) *__s *= __i;

      __der._erase_leading_zeros();
      return __der;
    }

    return {};
  }

  /**
   * @brief Differentiate at given point.
   *
   * @return Derivative coefficient.
   */
  _Tp deriv(const _Tp& __a) const noexcept {
    _Tp __der(0);

    if (auto __s = vector::_M_impl._M_start, __f = vector::_M_impl._M_finish;
        __s != __f)
      for (_Tp __i(1), __p(1); ++__s != __f; __i += 1, __p *= __a)
        __der += *__s * __i * __p;

    return __der;
  }

  /**
   * @brief Integrate.
   *
   * @return Integral indefinite at the degrees divisible by the characteristic
   * of `_Tp`. Coefficients are set as 0 there.
   */
  poly integ() const noexcept {
    if (auto __s = vector::_M_impl._M_start, __f = vector::_M_impl._M_finish;
        __s != __f) {
      poly __int(__f - __s + 1);

      __f = std::copy(__s, __f, __int._M_impl._M_start + 1);
      __s = __int._M_impl._M_start + 1;
      for (_Tp __i(1); __s != __f; ++__s, __i += 1)
        __i == _Tp(0) ? assert(*__s == _Tp(0)) : void(*__s /= __i);

      return __int;
    }

    return {};
  }

  /**
   * @brief Integrate in given range.
   *
   * @return Definite integral over [0, __a].
   */
  _Tp integ(const _Tp& __a) const noexcept {
    _Tp __int(0);

    auto __s = vector::_M_impl._M_start, __f = vector::_M_impl._M_finish;
    for (_Tp __p(__a), __i(1); __s != __f; ++__s, __p *= __a, __i += 1)
      __int += *__s / __i * __p;

    return __int;
  }

  /**
   * @brief Integrate in given range.
   *
   * @return Definite integral over [__a, __b].
   */
  _Tp integ(const _Tp& __a, const _Tp& __b) const noexcept {
    _Tp __int(0);

    auto __s = vector::_M_impl._M_start, __f = vector::_M_impl._M_finish;
    for (_Tp __pa(__a), __pb(__b), __i(1); __s != __f;
         ++__s, __pa *= __a, __pb *= __b, __i += 1)
      __int += *__s / __i * (__pb - __pa);

    return __int;
  }
};

}  // namespace workspace
#line 2 "Library/src/modular/modint.hpp"

/**
 * @file modint.hpp
 *
 * @brief Modular Arithmetic
 */

#line 12 "Library/src/modular/modint.hpp"

#line 14 "Library/src/modular/modint.hpp"

namespace workspace {

namespace internal {

/**
 * @brief Base of modular arithmetic.
 *
 * @tparam Mod identifier, which represents modulus if positive
 * @tparam Storage Reserved size for inverse calculation
 */
template <auto Mod, unsigned Storage> struct modint_base {
  static_assert(is_integral_ext<decltype(Mod)>::value,
                "Mod must be integral type.");

  using mod_type = typename std::make_signed<typename std::conditional<
      0 < Mod, typename std::add_const<decltype(Mod)>::type,
      decltype(Mod)>::type>::type;

  using value_type = typename std::decay<mod_type>::type;

  using mul_type = typename multiplicable_uint<value_type>::type;

  static mod_type mod;

  static value_type storage;

  constexpr static void reserve(unsigned __n) noexcept { storage = __n; }

  value_type value = 0;

 public:
  constexpr modint_base() noexcept = default;

  template <class int_type,
            typename std::enable_if<is_integral_ext<int_type>::value>::type * =
                nullptr>
  constexpr modint_base(int_type n) noexcept
      : value((n %= mod) < 0 ? n += mod : n) {}

  constexpr modint_base(bool n) noexcept : value(n) {}

  constexpr operator value_type() const noexcept { return value; }

  constexpr static modint_base one() noexcept { return 1; }

  // unary operators {{
  constexpr modint_base operator++(int) noexcept {
    modint_base __t{*this};
    operator++();
    return __t;
  }

  constexpr modint_base operator--(int) noexcept {
    modint_base __t{*this};
    operator--();
    return __t;
  }

  constexpr modint_base &operator++() noexcept {
    if (++value == mod) value = 0;
    return *this;
  }

  constexpr modint_base &operator--() noexcept {
    if (!value) value = mod;
    --value;
    return *this;
  }

  constexpr modint_base operator-() const noexcept {
    modint_base __t;
    __t.value = value ? mod - value : 0;
    return __t;
  }

  // }} unary operators

  // operator+= {{

  constexpr modint_base &operator+=(const modint_base &rhs) noexcept {
    if ((value += rhs.value) >= mod) value -= mod;
    return *this;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type &
  operator+=(int_type const &rhs) noexcept {
    if (((value += rhs) %= mod) < 0) value += mod;
    return *this;
  }

  // }} operator+=

  // operator+ {{

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type
  operator+(int_type const &rhs) const noexcept {
    return modint_base{*this} += rhs;
  }

  constexpr modint_base operator+(modint_base rhs) const noexcept {
    return rhs += *this;
  }

  template <class int_type>
  constexpr friend typename std::enable_if<is_integral_ext<int_type>::value,
                                           modint_base>::type
  operator+(int_type const &lhs, modint_base rhs) noexcept {
    return rhs += lhs;
  }

  // }} operator+

  // operator-= {{

  constexpr modint_base &operator-=(const modint_base &rhs) noexcept {
    if ((value -= rhs.value) < 0) value += mod;
    return *this;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type &
  operator-=(int_type rhs) noexcept {
    if (((value -= rhs) %= mod) < 0) value += mod;
    return *this;
  }

  // }} operator-=

  // operator- {{

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type
  operator-(int_type const &rhs) const noexcept {
    return modint_base{*this} -= rhs;
  }

  constexpr modint_base operator-(const modint_base &rhs) const noexcept {
    modint_base __t;
    if (((__t.value = value) -= rhs.value) < 0) __t.value += mod;
    return __t;
  }

  template <class int_type>
  constexpr friend typename std::enable_if<is_integral_ext<int_type>::value,
                                           modint_base>::type
  operator-(int_type lhs, const modint_base &rhs) noexcept {
    if (((lhs -= rhs.value) %= mod) < 0) lhs += mod;
    modint_base __t;
    __t.value = lhs;
    return __t;
  }

  // }} operator-

  // operator*= {{

  constexpr modint_base &operator*=(const modint_base &rhs) noexcept {
    value = static_cast<mul_type>(value) * rhs.value % mod;
    return *this;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type &
  operator*=(int_type rhs) noexcept {
    if (!rhs)
      value = 0;
    else if (value) {
      if ((rhs %= mod) < 0) rhs += mod;
      mul_type __r(value);
      value = static_cast<value_type &&>((__r *= rhs) %= mod);
    }
    return *this;
  }

  // }} operator*=

  // operator* {{

  constexpr modint_base operator*(const modint_base &rhs) const noexcept {
    modint_base __t;
    __t.value = static_cast<mul_type>(value) * rhs.value % mod;
    return __t;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type
  operator*(int_type rhs) const noexcept {
    if (!value or !rhs) return {};
    if ((rhs %= mod) < 0) rhs += mod;
    mul_type __r(value);
    modint_base __t;
    __t.value = static_cast<value_type &&>((__r *= rhs) %= mod);
    return __t;
  }

  template <class int_type>
  constexpr friend typename std::enable_if<is_integral_ext<int_type>::value,
                                           modint_base>::type
  operator*(int_type lhs, const modint_base &rhs) noexcept {
    if (!lhs or !rhs.value) return {};
    if ((lhs %= mod) < 0) lhs += mod;
    mul_type __r(lhs);
    modint_base __t;
    __t.value = static_cast<value_type &&>((__r *= rhs.value) %= mod);
    return __t;
  }

  // }} operator*

 protected:
  static value_type _mem(value_type __x) {
    static std::vector<value_type> __m{0, 1};
    static value_type __i = (__m.reserve(Storage), 1);
    while (__i < __x) {
      ++__i;
      __m.emplace_back(mod - mul_type(mod / __i) * __m[mod % __i] % mod);
    }
    return __m[__x];
  }

  template <class int_type>
  constexpr static typename std::enable_if<is_integral_ext<int_type>::value,
                                           value_type>::type
  _div(mul_type __r, int_type __x) noexcept {
    assert(__x);
    if (!__r) return 0;
    int_type __v{};
    bool __neg = __x < 0 ? __x = -__x, true : false;
    if (__x < storage)
      __v = _mem(__x);
    else {
      int_type __y{mod}, __u{1}, __t;
      while (__x)
        __t = __y / __x, __y ^= __x ^= (__y -= __t * __x) ^= __x,
        __v ^= __u ^= (__v -= __t * __u) ^= __u;
      if (__y < 0) __neg ^= 1;
    }
    if (__neg)
      __v = 0 < __v ? mod - __v : -__v;
    else if (__v < 0)
      __v += mod;
    if (__r == 1) return static_cast<value_type>(__v);
    return static_cast<value_type>((__r *= __v) %= mod);
  }

 public:
  // operator/= {{

  constexpr modint_base &operator/=(const modint_base &rhs) noexcept {
    if (value) value = _div(value, rhs.value);
    return *this;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type &
  operator/=(int_type rhs) noexcept {
    if (value) value = _div(value, rhs %= mod);
    return *this;
  }

  // }} operator/=

  // operator/ {{

  constexpr modint_base operator/(const modint_base &rhs) const noexcept {
    if (!value) return {};
    modint_base __t;
    __t.value = _div(value, rhs.value);
    return __t;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type
  operator/(int_type rhs) const noexcept {
    if (!value) return {};
    modint_base __t;
    __t.value = _div(value, rhs %= mod);
    return __t;
  }

  template <class int_type>
  constexpr friend typename std::enable_if<is_integral_ext<int_type>::value,
                                           modint_base>::type
  operator/(int_type lhs, const modint_base &rhs) noexcept {
    if (!lhs) return {};
    if ((lhs %= mod) < 0) lhs += mod;
    modint_base __t;
    __t.value = _div(lhs, rhs.value);
    return __t;
  }

  // }} operator/

  constexpr modint_base inv() const noexcept { return _div(1, value); }

  template <class int_type>
  friend constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                           modint_base>::type
  pow(modint_base b, int_type e) noexcept {
    if (e < 0) {
      e = -e;
      b.value = _div(1, b.value);
    }
    modint_base __r;
    for (__r.value = 1; e; e >>= 1, b *= b)
      if (e & 1) __r *= b;
    return __r;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type
  pow(int_type e) const noexcept {
    modint_base __r, b;
    __r.value = 1;
    for (b.value = e < 0 ? e = -e, _div(1, value) : value; e; e >>= 1, b *= b)
      if (e & 1) __r *= b;
    return __r;
  }

  friend std::ostream &operator<<(std::ostream &os,
                                  const modint_base &rhs) noexcept {
    return os << rhs.value;
  }

  friend std::istream &operator>>(std::istream &is, modint_base &rhs) noexcept {
    intmax_t value;
    rhs = (is >> value, value);
    return is;
  }
};

template <auto Mod, unsigned Storage>
typename modint_base<Mod, Storage>::mod_type modint_base<Mod, Storage>::mod =
    Mod > 0 ? Mod : 0;

template <auto Mod, unsigned Storage>
typename modint_base<Mod, Storage>::value_type
    modint_base<Mod, Storage>::storage = Storage;

}  // namespace internal

/**
 * @brief Modular arithmetic.
 *
 * @tparam Mod modulus
 * @tparam Storage Reserved size for inverse calculation
 */
template <auto Mod, unsigned Storage = 0,
          typename std::enable_if<(Mod > 0)>::type * = nullptr>
using modint = internal::modint_base<Mod, Storage>;

/**
 * @brief Runtime modular arithmetic.
 *
 * @tparam type_id uniquely assigned
 * @tparam Storage Reserved size for inverse calculation
 */
template <unsigned type_id = 0, unsigned Storage = 0>
using modint_runtime = internal::modint_base<-(signed)type_id, Storage>;

// #define modint_newtype modint_runtime<__COUNTER__>

}  // namespace workspace
#line 2 "Library/src/utils/io/ostream.hpp"

/**
 * @file ostream.hpp
 * @brief Output Stream
 */

#line 9 "Library/src/utils/io/ostream.hpp"

namespace workspace {

template <class _Os> struct is_ostream {
  template <typename... _Args>
  static std::true_type __test(std::basic_ostream<_Args...> *);

  static std::false_type __test(void *);

  constexpr static bool value = decltype(__test(std::declval<_Os *>()))::value;
};

template <class _Os>
using ostream_ref =
    typename std::enable_if<is_ostream<_Os>::value, _Os &>::type;

/**
 * @brief Stream insertion operator for C-style array.
 *
 * @param __os Output stream
 * @param __a Array
 * @return Reference to __os.
 */
template <class _Os, class _Tp, size_t _Nm>
typename std::enable_if<bool(sizeof(_Tp) > 2), ostream_ref<_Os>>::type
operator<<(_Os &__os, const _Tp (&__a)[_Nm]) {
  if constexpr (_Nm) {
    __os << *__a;
    for (auto __i = __a + 1, __e = __a + _Nm; __i != __e; ++__i)
      __os << ' ' << *__i;
  }
  return __os;
}

/**
 * @brief Stream insertion operator for std::pair.
 *
 * @param __os Output stream
 * @param __p Pair
 * @return Reference to __os.
 */
template <class _Os, class _T1, class _T2>
ostream_ref<_Os> operator<<(_Os &__os, const std::pair<_T1, _T2> &__p) {
  return __os << __p.first << ' ' << __p.second;
}

/**
 * @brief Stream insertion operator for std::tuple.
 *
 * @param __os Output stream
 * @param __t Tuple
 * @return Reference to __os.
 */
template <class _Os, class _Tp, size_t _Nm = 0>
typename std::enable_if<bool(std::tuple_size<_Tp>::value + 1),
                        ostream_ref<_Os>>::type
operator<<(_Os &__os, const _Tp &__t) {
  if constexpr (_Nm != std::tuple_size<_Tp>::value) {
    if constexpr (_Nm) __os << ' ';
    __os << std::get<_Nm>(__t);
    operator<<<_Os, _Tp, _Nm + 1>(__os, __t);
  }
  return __os;
}

template <class _Os, class _Container,
          typename = decltype(std::begin(std::declval<_Container>()))>
typename std::enable_if<
    !std::is_same<typename std::decay<_Container>::type, std::string>::value &&
        !std::is_same<typename std::decay<_Container>::type, char *>::value,
    ostream_ref<_Os>>::type
operator<<(_Os &__os, const _Container &__cont) {
  bool __h = true;
  for (auto &&__e : __cont) __h ? __h = 0 : (__os << ' ', 0), __os << __e;
  return __os;
}

#ifdef __SIZEOF_INT128__

/**
 * @brief Stream insertion operator for __int128_t.
 *
 * @param __os Output Stream
 * @param __x 128-bit integer
 * @return Reference to __os.
 */
template <class _Os> ostream_ref<_Os> operator<<(_Os &__os, __int128_t __x) {
  if (!__x) return __os << '0';
  if (__x < 0) __os << '-';
  char __s[40], *__p = __s;
  while (__x) {
    auto __d = __x % 10;
    *__p++ = '0' + (__x < 0 ? -__d : __d);
    __x /= 10;
  }
  *__p = 0;
  for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p;
  return __os << __s;
}

/**
 * @brief Stream insertion operator for __uint128_t.
 *
 * @param __os Output Stream
 * @param __x 128-bit unsigned integer
 * @return Reference to __os.
 */
template <class _Os> ostream_ref<_Os> operator<<(_Os &__os, __uint128_t __x) {
  if (!__x) return __os << '0';
  char __s[40], *__p = __s;
  while (__x) *__p++ = '0' + __x % 10, __x /= 10;
  *__p = 0;
  for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p;
  return __os << __s;
}

#endif

}  // namespace workspace
#line 9 "other/y.cc"

namespace workspace {

using mint = modint<998244353>;

void main() {
  // start here!

  std::cin.tie(0)->sync_with_stdio(0);

  int n;
  std::cin >> n;
  polynomial<mint, 64> p(n);
  mint f = 1;
  for (int i = 0; i < n; ++i) {
    p[i] = f *= i + 1;
  }
  p = p._inv(n);
  std::cout << 1 - std::accumulate(begin(p), end(p), mint{0}) << "\n";
}

}  // namespace workspace

int main() { workspace::main(); }
0