結果

問題 No.1136 Four Points Tour
ユーザー tanimani364tanimani364
提出日時 2021-03-08 20:45:04
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
MLE  
(最新)
AC  
(最初)
実行時間 -
コード長 3,194 bytes
コンパイル時間 2,299 ms
コンパイル使用メモリ 202,976 KB
実行使用メモリ 675,476 KB
最終ジャッジ日時 2024-10-10 11:35:58
合計ジャッジ時間 20,978 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,632 KB
testcase_01 MLE -
testcase_02 AC 2 ms
13,636 KB
testcase_03 MLE -
testcase_04 AC 2 ms
13,640 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 20 ms
6,816 KB
testcase_08 AC 2 ms
6,820 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 28 ms
6,816 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 5 ms
6,820 KB
testcase_13 AC 1 ms
6,816 KB
testcase_14 AC 4 ms
6,820 KB
testcase_15 AC 2 ms
6,820 KB
testcase_16 AC 5 ms
6,820 KB
testcase_17 AC 6 ms
6,816 KB
testcase_18 AC 23 ms
6,816 KB
testcase_19 AC 41 ms
7,148 KB
testcase_20 AC 3 ms
6,820 KB
testcase_21 AC 22 ms
6,816 KB
01_Sample03_evil.txt RE -
04_Rnd_large_evil1.txt MLE -
04_Rnd_large_evil2.txt MLE -
04_Rnd_large_evil3.txt MLE -
04_Rnd_large_evil4.txt TLE -
04_Rnd_large_evil5.txt MLE -
04_Rnd_large_evil6.txt MLE -
04_Rnd_large_evil7.txt MLE -
04_Rnd_large_evil8.txt TLE -
04_Rnd_large_evil9.txt MLE -
04_Rnd_large_evil10.txt TLE -
05_Rnd_huge_evil1.txt RE -
05_Rnd_huge_evil2.txt RE -
05_Rnd_huge_evil3.txt RE -
05_Rnd_huge_evil4.txt RE -
05_Rnd_huge_evil5.txt RE -
05_Rnd_huge_evil6.txt RE -
05_Rnd_huge_evil7.txt RE -
99_evil_01.txt MLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
//#include<boost/multiprecision/cpp_int.hpp>
//#include<boost/multiprecision/cpp_dec_float.hpp>
//#include <atcoder/all>
#define rep(i, a) for (int i = (int)0; i < (int)a; ++i)
#define rrep(i, a) for (int i = (int)a - 1; i >= 0; --i)
#define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i)
#define RREP(i, a, b) for (int i = (int)a - 1; i >= b; --i)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define popcount __builtin_popcount
using ll = long long;
constexpr ll mod = 1e9 + 7;
constexpr ll INF = 1LL << 60;

// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")

//using lll=boost::multiprecision::cpp_int;
//using Double=boost::multiprecision::number<boost::multiprecision::cpp_dec_float<1024>>;//仮数部が1024桁
template <class T>
inline bool chmin(T &a, T b)
{
	if (a > b)
	{
		a = b;
		return true;
	}
	return false;
}
template <class T>
inline bool chmax(T &a, T b)
{
	if (a < b)
	{
		a = b;
		return true;
	}
	return false;
}

template <typename T>
T mypow(T x, T n, const T &p = -1)
{ //x^nをmodで割った余り

	if(p!=-1){
		x%=p;
	}
	T ret = 1;
	while (n > 0)
	{
		if (n & 1)
		{
			if (p != -1)
				ret = (ret * x) % p;
			else
				ret *= x;
		}
		if (p != -1)
			x = (x * x) % p;
		else
			x *= x;
		n >>= 1;
	}
	return ret;
}

using namespace std;
//using namespace atcoder;

template<int mod>
struct Modint{
    int x;
    Modint():x(0){}
    Modint(int64_t y):x((y%mod+mod)%mod){}

    Modint &operator+=(const Modint &p){
			if((x+=p.x)>=mod)
				x -= mod;
			return *this;
		}

		Modint &operator-=(const Modint &p){
			if((x+=mod-p.x)>=mod)
				x -= mod;
			return *this;
		}

		Modint &operator*=(const Modint &p){
			x = (1LL * x * p.x) % mod;
			return *this;
		}

		Modint &operator/=(const Modint &p){
			*this *= p.inverse();
			return *this;
		}

		Modint operator-() const { return Modint(-x); }
		Modint operator+(const Modint &p) const{
			return Modint(*this) += p;
		}
		Modint operator-(const Modint &p) const{
			return Modint(*this) -= p;
		}
		Modint operator*(const Modint &p) const{
			return Modint(*this) *= p;
		}
		Modint operator/(const Modint &p) const{
			return Modint(*this) /= p;
		}

		bool operator==(const Modint &p) const { return x == p.x; }
		bool operator!=(const Modint &p) const{return x != p.x;}

		Modint inverse() const{//非再帰拡張ユークリッド
			int a = x, b = mod, u = 1, v = 0;
			while(b>0){
				int t = a / b;
				swap(a -= t * b, b);
				swap(u -= t * v, v);
			}
			return Modint(u);
		}

		Modint pow(int64_t n) const{//繰り返し二乗法
			Modint ret(1), mul(x);
			while(n>0){
				if(n&1)
					ret *= mul;
				mul *= mul;
				n >>= 1;
			}
			return ret;
		}

		friend ostream &operator<<(ostream &os,const Modint &p){
			return os << p.x;
		}
};

using modint = Modint<mod>;

void solve()
{	
	ll n;
	cin>>n;
	vector<modint>dp(n+1);
	dp[0]=1;
	rep(i,n){
		dp[i+1]=(-dp[i]+1)/3;
	}
	dp[n]*=mypow<ll>(3,n,mod);
	cout<<dp[n]<<"\n";
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	cout << fixed << setprecision(180);
	solve();
	return 0;
}
0