結果
問題 | No.1136 Four Points Tour |
ユーザー | tanimani364 |
提出日時 | 2021-03-08 21:30:50 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 6,157 bytes |
コンパイル時間 | 2,438 ms |
コンパイル使用メモリ | 208,624 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-10 11:36:02 |
合計ジャッジ時間 | 3,727 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 1 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 1 ms
6,820 KB |
testcase_14 | AC | 2 ms
6,820 KB |
testcase_15 | AC | 2 ms
6,820 KB |
testcase_16 | AC | 2 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,816 KB |
testcase_18 | AC | 2 ms
6,820 KB |
testcase_19 | AC | 2 ms
6,820 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 2 ms
6,820 KB |
01_Sample03_evil.txt | AC | 2 ms
6,820 KB |
04_Rnd_large_evil1.txt | AC | 2 ms
6,816 KB |
04_Rnd_large_evil2.txt | AC | 2 ms
6,816 KB |
04_Rnd_large_evil3.txt | AC | 1 ms
6,820 KB |
04_Rnd_large_evil4.txt | AC | 2 ms
6,816 KB |
04_Rnd_large_evil5.txt | AC | 2 ms
6,816 KB |
04_Rnd_large_evil6.txt | AC | 2 ms
6,820 KB |
04_Rnd_large_evil7.txt | AC | 2 ms
6,824 KB |
04_Rnd_large_evil8.txt | AC | 2 ms
6,816 KB |
04_Rnd_large_evil9.txt | AC | 2 ms
6,816 KB |
04_Rnd_large_evil10.txt | AC | 2 ms
6,816 KB |
05_Rnd_huge_evil1.txt | AC | 2 ms
6,816 KB |
05_Rnd_huge_evil2.txt | AC | 2 ms
6,816 KB |
05_Rnd_huge_evil3.txt | AC | 2 ms
6,816 KB |
05_Rnd_huge_evil4.txt | AC | 2 ms
6,816 KB |
05_Rnd_huge_evil5.txt | AC | 2 ms
6,820 KB |
05_Rnd_huge_evil6.txt | AC | 2 ms
6,820 KB |
05_Rnd_huge_evil7.txt | AC | 2 ms
6,816 KB |
99_evil_01.txt | AC | 2 ms
6,820 KB |
ソースコード
#include <bits/stdc++.h> //#include<boost/multiprecision/cpp_int.hpp> //#include<boost/multiprecision/cpp_dec_float.hpp> //#include <atcoder/all> #define rep(i, a) for (int i = (int)0; i < (int)a; ++i) #define rrep(i, a) for (int i = (int)a - 1; i >= 0; --i) #define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i) #define RREP(i, a, b) for (int i = (int)a - 1; i >= b; --i) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define popcount __builtin_popcount using ll = long long; constexpr ll mod = 1e9 + 7; constexpr ll INF = 1LL << 60; // #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") //using lll=boost::multiprecision::cpp_int; //using Double=boost::multiprecision::number<boost::multiprecision::cpp_dec_float<1024>>;//仮数部が1024桁 template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template <typename T> T mypow(T x, T n, const T &p = -1) { //x^nをmodで割った余り if(p!=-1){ x%=p; } T ret = 1; while (n > 0) { if (n & 1) { if (p != -1) ret = (ret * x) % p; else ret *= x; } if (p != -1) x = (x * x) % p; else x *= x; n >>= 1; } return ret; } using namespace std; //using namespace atcoder; template<int mod> struct Modint{ int x; Modint():x(0){} Modint(int64_t y):x((y%mod+mod)%mod){} Modint &operator+=(const Modint &p){ if((x+=p.x)>=mod) x -= mod; return *this; } Modint &operator-=(const Modint &p){ if((x+=mod-p.x)>=mod) x -= mod; return *this; } Modint &operator*=(const Modint &p){ x = (1LL * x * p.x) % mod; return *this; } Modint &operator/=(const Modint &p){ *this *= p.inverse(); return *this; } Modint operator-() const { return Modint(-x); } Modint operator+(const Modint &p) const{ return Modint(*this) += p; } Modint operator-(const Modint &p) const{ return Modint(*this) -= p; } Modint operator*(const Modint &p) const{ return Modint(*this) *= p; } Modint operator/(const Modint &p) const{ return Modint(*this) /= p; } bool operator==(const Modint &p) const { return x == p.x; } bool operator!=(const Modint &p) const{return x != p.x;} Modint inverse() const{//非再帰拡張ユークリッド int a = x, b = mod, u = 1, v = 0; while(b>0){ int t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return Modint(u); } Modint pow(int64_t n) const{//繰り返し二乗法 Modint ret(1), mul(x); while(n>0){ if(n&1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os,const Modint &p){ return os << p.x; } }; using modint = Modint<mod>; template< class T > struct Matrix { vector< vector< T > > A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {} Matrix(size_t n) : A(n, vector< T >(n, 0)) {}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector< T > &operator[](int k) const { return (A.at(k)); } inline vector< T > &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector< vector< T > > C(n, vector< T >(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << "["; for(int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for(int i = 0; i < width(); i++) { int idx = -1; for(int j = i; j < width(); j++) { if(B[j][i] != 0) idx = j; } if(idx == -1) return (0); if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j = 0; j < width(); j++) { B[i][j] /= vv; } for(int j = i + 1; j < width(); j++) { T a = B[j][i]; for(int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; void solve() { ll n; cin>>n; Matrix<modint>mat(2,2); mat[0][0]=modint(-1)/modint(3),mat[0][1]=modint(1)/modint(3); mat[1][1]=1; mat^=n; modint x=3; x=x.pow(n); modint ans=(mat[0][0]+mat[0][1])*x; cout<<ans<<"\n"; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(180); solve(); return 0; }