結果
| 問題 | No.199 星を描こう |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-03-11 19:30:03 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 1 ms / 2,000 ms |
| コード長 | 14,648 bytes |
| コンパイル時間 | 12,470 ms |
| コンパイル使用メモリ | 404,080 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-10-13 07:14:45 |
| 合計ジャッジ時間 | 13,862 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
fn main() {
let mut io = IO::new();
input!{ from io,
ps: [(f64, f64); 5]
}
let pl = ps.iter().map(|&(x, y)| Point::new(x, y)).collect::<Vec<Point>>();
io.println(
if convex_hull(&pl).len() == 5 {
"YES"
} else {
"NO"
}
);
}
pub fn convex_hull(points: &[Point]) -> Vec<Point> {
let mut l = points.to_owned();
l.sort_by(|x, y| x.x().partial_cmp(&y.x()).unwrap());
let mut res1: Vec<Point> = Vec::new();
let mut res2: Vec<Point> = Vec::new();
for &x in &l {
while res1.len() > 1 && res1[res1.len() - 2].area(&res1[res1.len() - 1], &x) <= 0. {
res1.pop();
}
res1.push(x);
}
res1.pop();
for &x in l.iter().rev() {
while res2.len() > 1 && res2[res2.len() - 2].area(&res2[res2.len() - 1], &x) <= 0. {
res2.pop();
}
res2.push(x);
}
res2.pop();
res1.extend_from_slice(&res2);
res1
}
// ------------ geometry start ------------
#[derive(Clone, Copy)]
pub struct Point(f64, f64);
impl Point {
pub const EPS: f64 = 0.000_000_001;
pub fn new<T: Into<f64>>(x: T, y: T) -> Self {
Self(x.into(), y.into())
}
#[inline]
pub fn x(&self) -> f64 { self.0 }
#[inline]
pub fn y(&self) -> f64 { self.1 }
#[inline]
pub fn arg(&self) -> f64 {
self.1.atan2(self.0)
}
#[inline]
pub fn norm(&self) -> f64 {
(self.0.powi(2) + self.1.powi(2)).sqrt()
}
#[inline]
pub fn dist(&self, rhs: &Self) -> f64 {
(self - rhs).norm()
}
#[inline]
pub fn unit(&self) -> Self {
assert!(!self.is_zero(), "ゼロベクトルに法線はありませんよ?");
let d = self.norm();
Self(self.0 / d, self.1 / d)
}
#[inline]
pub fn normal(&self) -> Self {
Self(-self.1, self.0)
}
#[inline]
pub fn dot(&self, rhs: &Self) -> f64 {
self.0 * rhs.0 + self.1 * rhs.1
}
#[inline]
pub fn cross(&self, rhs: &Self) -> f64 {
self.0 * rhs.1 - self.1 * rhs.0
}
#[inline]
pub fn area(&self, p: &Self, q: &Self) -> f64 {
(p - self).cross(&(q - self))
}
#[inline]
pub fn rotate(&self, theta: f64) -> Self {
Self (
self.0 * theta.cos() - self.1 * theta.sin(),
self.0 * theta.sin() + self.1 * theta.cos(),
)
}
}
pub struct Line(Point, Point);
impl Line {
pub fn new(p: Point, q: Point) -> Self {
Self(p, q)
}
/// a * x + b * y = c
pub fn from_equation(a: f64, b: f64, c: f64) -> Self {
assert!(a.abs() < Point::EPS || a.abs() < Point::EPS, "不当な式ではありませんか?");
if a.abs() < Point::EPS {
Self(Point::new(0., c / b), Point::new(1., c / b))
} else if b.abs() < Point::EPS {
Self(Point::new(c / a, 0.), Point::new(c / a, 1.))
} else {
Self(Point::new(0., c / b), Point::new(c / a, 0.))
}
}
#[inline]
pub fn projection(&self, p: &Point) -> Point {
self.0 + (self.0 - self.1) * Point::new(
(p - self.0).dot(&(self.0 - self.1)) / (self.0 - self.1).norm(),
0.
)
}
#[inline]
pub fn reflection(&self, p: &Point) -> Point {
p + (self.projection(p) - p) * Point::new(2., 0.)
}
#[inline]
pub fn is_orthogonal(&self, rhs: &Self) -> bool {
(self.1 - self.0).dot(&(rhs.1 - rhs.0)) < Point::EPS
}
#[inline]
pub fn is_parallel(&self, rhs: &Self) -> bool {
(self.1 - self.0).cross(&(rhs.1 - rhs.0)) < Point::EPS
}
pub fn crosspoint(&self, rhs: &Self) -> Option<Point> {
let d1 = (self.1 - self.0).cross(&(rhs.1 - rhs.0));
let d2 = (self.1 - self.0).cross(&(rhs.1 - rhs.0));
if self.is_parallel(rhs) {
if d1.abs() < Point::EPS && d2.abs() < Point::EPS {
Some(self.0)
} else {
None
}
} else {
Some(rhs.0 + (rhs.1 - rhs.0) * Point::new(d2 / d1, 0.))
}
}
}
pub struct Circle {
pub center: Point,
pub radius: f64,
}
impl Circle {
pub fn new<T: Into<f64>>(x: T, y: T, r: T) -> Self {
Self {
center: Point::new(x, y),
radius: r.into()
}
}
#[allow(unused_variables)]
pub fn intersection(&self, rhs: &Self) -> (Option<Point>, Option<Point>) {
todo!()
}
}
// ------------ impl arith start ------------
use std::fmt;
impl fmt::Debug for Point {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({:.6}, {:.6})", self.x(), self.y())
}
}
impl fmt::Display for Point {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({:.6}, {:.6})", self.x(), self.y())
}
}
impl PartialEq for Point {
fn eq(&self, rhs: &Self) -> bool {
(self.0 - rhs.0).abs() < Self::EPS &&
(self.1 - rhs.1).abs() < Self::EPS
}
}
impl Eq for Point {}
impl PartialOrd for Point {
fn partial_cmp(&self, rhs: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(rhs))
}
}
impl Ord for Point {
fn cmp(&self, rhs: &Self) -> std::cmp::Ordering {
if let Some(v) = self.arg().partial_cmp(&rhs.arg()) {
v
} else {
std::cmp::Ordering::Equal
}
}
}
impl Add for Point {
type Output = Point;
fn add(self, rhs: Self) -> Self {
Self(self.0 + rhs.0, self.1 + rhs.1)
}
}
impl Sub for Point {
type Output = Point;
fn sub(self, rhs: Self) -> Self {
Self(self.0 - rhs.0, self.1 - rhs.1)
}
}
impl Mul for Point {
type Output = Point;
fn mul(self, rhs: Self) -> Self {
Self(
self.0 * rhs.0 - self.1 * rhs.1,
self.0 * rhs.1 + self.1 * rhs.0
)
}
}
#[allow(clippy::suspicious_arithmetic_impl)]
impl Div for Point {
type Output = Point;
fn div(self, rhs: Self) -> Self {
assert!(!rhs.is_zero(), "ゼロベクトルで割ろうとしていませんか?");
let d = rhs.0.powi(2) + rhs.1.powi(2);
Self(
(self.0 * rhs.0 - self.1 * -rhs.1) / d,
(self.0 * -rhs.1 + self.1 * rhs.0) / d
)
}
}
impl Zero for Point {
fn zero() -> Self {
Self(0., 0.)
}
}
impl<'a> Zero for &'a Point {
fn zero() -> &'a Point {
&Point(0., 0.)
}
}
macro_rules! binop_ref {
($(impl $imp:ident, $method:ident)*) => {
$(
impl<'a> $imp<Point> for &'a Point {
type Output = Point;
fn $method(self, other: Point) -> Self::Output {
$imp::$method(*self, other)
}
}
impl<'a> $imp<&'a Point> for Point {
type Output = Point;
fn $method(self, other: &Point) -> Self::Output {
$imp::$method(self, *other)
}
}
impl<'a> $imp<&'a Point> for &'a Point {
type Output = Point;
fn $method(self, other: &Point) -> Self::Output {
$imp::$method(*self, *other)
}
}
)*
};
}
binop_ref! {
impl Add, add
impl Sub, sub
impl Mul, mul
impl Div, div
}
// ------------ impl arith end ------------
// ------------ geometry end ------------
// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;
/// 元
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}
/// 結合性
pub trait Associative: Magma {}
/// マグマ
pub trait Magma: Element + Add<Output=Self> {}
impl<T: Element + Add<Output=Self>> Magma for T {}
/// 半群
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}
/// モノイド
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}
pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}
/// 群
pub trait Group: Monoid + Neg<Output=Self> {}
impl<T: Monoid + Neg<Output=Self>> Group for T {}
pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}
/// 半環
pub trait SemiRing: ComMonoid + Mul<Output=Self> + One {}
impl<T: ComMonoid + Mul<Output=Self> + One> SemiRing for T {}
/// 環
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}
pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}
/// 体
pub trait Field: ComRing + Div<Output=Self> + DivAssign {}
impl<T: ComRing + Div<Output=Self> + DivAssign> Field for T {}
/// 加法単元
pub trait Zero: Element {
fn zero() -> Self;
fn is_zero(&self) -> bool {
*self == Self::zero()
}
}
/// 乗法単元
pub trait One: Element {
fn one() -> Self;
fn is_one(&self) -> bool {
*self == Self::one()
}
}
macro_rules! impl_integer {
($($T:ty,)*) => {
$(
impl Associative for $T {}
impl Zero for $T {
fn zero() -> Self { 0 }
fn is_zero(&self) -> bool { *self == 0 }
}
impl<'a> Zero for &'a $T {
fn zero() -> Self { &0 }
fn is_zero(&self) -> bool { *self == &0 }
}
impl One for $T {
fn one() -> Self { 1 }
fn is_one(&self) -> bool { *self == 1 }
}
impl<'a> One for &'a $T {
fn one() -> Self { &1 }
fn is_one(&self) -> bool { *self == &1 }
}
)*
};
}
impl_integer! {
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------
// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};
pub struct IO {
iter: std::str::SplitAsciiWhitespace<'static>,
buf: BufWriter<StdoutLock<'static>>,
}
impl IO {
pub fn new() -> Self {
let mut input = String::new();
std::io::stdin().read_to_string(&mut input).unwrap();
let input = Box::leak(input.into_boxed_str());
let out = Box::new(stdout());
IO {
iter: input.split_ascii_whitespace(),
buf: BufWriter::new(Box::leak(out).lock()),
}
}
fn scan_str(&mut self) -> &'static str {
self.iter.next().unwrap()
}
pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
<T as Scan>::scan(self)
}
pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
(0..n).map(|_| self.scan::<T>()).collect()
}
pub fn print<T: Print>(&mut self, x: T) {
<T as Print>::print(self, x);
}
pub fn println<T: Print>(&mut self, x: T) {
self.print(x);
self.print("\n");
}
pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
if let Some(v) = iter.next() {
self.print(v);
for v in iter {
self.print(delim);
self.print(v);
}
}
self.print("\n");
}
pub fn flush(&mut self) {
self.buf.flush().unwrap();
}
}
impl Default for IO {
fn default() -> Self {
Self::new()
}
}
pub trait Scan {
type Output;
fn scan(io: &mut IO) -> Self::Output;
}
macro_rules! impl_scan {
($($t:tt),*) => {
$(
impl Scan for $t {
type Output = Self;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().parse().unwrap()
}
}
)*
};
}
impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);
impl Scan for char {
type Output = char;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().next().unwrap()
}
}
pub enum Bytes {}
impl Scan for Bytes {
type Output = &'static [u8];
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().as_bytes()
}
}
pub enum Chars {}
impl Scan for Chars {
type Output = Vec<char>;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().collect()
}
}
pub enum Usize1 {}
impl Scan for Usize1 {
type Output = usize;
fn scan(s: &mut IO) -> Self::Output {
s.scan::<usize>().wrapping_sub(1)
}
}
impl<T: Scan, U: Scan> Scan for (T, U) {
type Output = (T::Output, U::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
type Output = (T::Output, U::Output, V::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
type Output = (T::Output, U::Output, V::Output, W::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
}
}
pub trait Print {
fn print(w: &mut IO, x: Self);
}
macro_rules! impl_print_int {
($($t:ty),*) => {
$(
impl Print for $t {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x.to_string().as_bytes()).unwrap();
}
}
)*
};
}
impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);
impl Print for u8 {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(&[x]).unwrap();
}
}
impl Print for &[u8] {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x).unwrap();
}
}
impl Print for &str {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl Print for String {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl<T: Print, U: Print> Print for (T, U) {
fn print(w: &mut IO, (x, y): Self) {
w.print(x);
w.print(" ");
w.print(y);
}
}
impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
fn print(w: &mut IO, (x, y, z): Self) {
w.print(x);
w.print(" ");
w.print(y);
w.print(" ");
w.print(z);
}
}
mod neboccoio_macro {
#[macro_export]
macro_rules! input {
(@start $io:tt @read @rest) => {};
(@start $io:tt @read @rest, $($rest: tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @rest mut $($rest:tt)*) => {
input!(@start $io @read @mut [mut] @rest $($rest)*)
};
(@start $io:tt @read @rest $($rest:tt)*) => {
input!(@start $io @read @mut [] @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => {
let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::<Vec<Vec<$kind>>>();
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
let $($mut)* $var = $io.scan_vec::<$kind>($len);
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
let $($mut)* $var = $io.scan::<$kind>();
input!(@start $io @read @rest $($rest)*)
};
(from $io:tt $($rest:tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
}
}
// ------------ io module end ------------