結果
| 問題 |
No.1426 Got a Covered OR
|
| コンテスト | |
| ユーザー |
cotton_fn_
|
| 提出日時 | 2021-03-12 22:41:39 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 16 ms / 2,000 ms |
| コード長 | 14,695 bytes |
| コンパイル時間 | 13,392 ms |
| コンパイル使用メモリ | 378,264 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-10-14 13:15:35 |
| 合計ジャッジ時間 | 14,647 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 24 |
ソースコード
#![allow(unused_imports, unused_macros)]
use kyoproio::*;
use std::{
collections::*,
io::{self, prelude::*},
iter, mem,
};
fn run<I: Input, O: Write>(mut kin: I, mut out: O) {
let n: usize = kin.parse();
let mut b = vec![0];
let mut c = vec![0u32];
for x in kin.parse_iter::<i32>().take(n) {
if x == -1 {
*c.last_mut().unwrap() += 1;
} else {
b.push(x);
c.push(0);
}
}
d!(b);
d!(c);
let f = Fact::new(n);
let mut ans = mint(1);
for (b, &c) in b.windows(2).zip(&c) {
let bl = b[0];
let br = b[1];
if bl & br != bl {
wln!(out, "0");
return;
}
let pcl = bl.count_ones();
let pcr = br.count_ones();
let mut cnt = if bl == br { mint(1) } else { mint(0) };
for x in 1..=c + 1 {
cnt = f.binom(c as usize + 1, x as usize) * (mint(2).pow(x) - mint(1)).pow(pcr - pcl) * mint(2).pow(x * pcl) - cnt;
}
ans *= cnt;
}
wln!(out, "{}", ans);
}
pub struct Fact<M> {
f: Vec<ModInt<M>>,
finv: Vec<ModInt<M>>,
}
impl<M: Modulo> Fact<M> {
pub fn new(n: usize) -> Self {
let mut f = vec![ModInt::new(0); n + 1];
f[0] = ModInt::new(1);
for i in 1..=n {
f[i] = ModInt::new(i as u32) * f[i - 1];
}
let mut finv = vec![ModInt::new(0); n + 1];
finv[n] = f[n].inv();
for i in (1..=n).rev() {
finv[i - 1] = finv[i] * ModInt::new(i as u32);
}
Self { f, finv }
}
pub fn fact(&self, x: usize) -> ModInt<M> {
self.f[x]
}
pub fn fact_inv(&self, x: usize) -> ModInt<M> {
self.finv[x]
}
pub fn binom(&self, n: usize, k: usize) -> ModInt<M> {
if n >= k {
self.fact(n) * self.fact_inv(n - k) * self.fact_inv(k)
} else {
ModInt::new(0)
}
}
pub fn perm(&self, n: usize, k: usize) -> ModInt<M> {
if n >= k {
self.fact(n) * self.fact_inv(n - k)
} else {
ModInt::new(0)
}
}
}
use std::{cmp, fmt, marker::PhantomData, ops, sync::atomic};
pub type Mint = ModInt<Mod1000000007>;
pub fn mint(x: u32) -> Mint {
ModInt::new(x)
}
pub trait Modulo {
fn modulo() -> u32;
}
macro_rules! modulo_impl {
($($Type:ident $val:tt)*) => {
$(pub struct $Type;
impl Modulo for $Type {
fn modulo() -> u32 {
$val
}
})*
};
}
modulo_impl!(Mod998244353 998244353 Mod1000000007 1000000007);
pub struct VarMod;
static VAR_MOD: atomic::AtomicU32 = atomic::AtomicU32::new(0);
pub fn set_var_mod(m: u32) {
VAR_MOD.store(m, atomic::Ordering::Relaxed);
}
impl Modulo for VarMod {
fn modulo() -> u32 {
VAR_MOD.load(atomic::Ordering::Relaxed)
}
}
#[repr(transparent)]
pub struct ModInt<M>(u32, PhantomData<*const M>);
impl<M: Modulo> ModInt<M> {
pub fn new(x: u32) -> Self {
debug_assert!(x < M::modulo());
Self(x, PhantomData)
}
pub fn normalize(self) -> Self {
if self.0 < M::modulo() {
self
} else {
Self::new(self.0 % M::modulo())
}
}
pub fn get(self) -> u32 {
self.0
}
pub fn inv(self) -> Self {
assert_ne!(self, Self::new(0));
self.pow(M::modulo() - 2)
}
pub fn half(self) -> Self {
Self::new(self.0 / 2 + self.0 % 2 * ((M::modulo() + 1) / 2))
}
pub fn modulo() -> u32 {
M::modulo()
}
}
impl<M: Modulo> ops::Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self {
Self::new(if self.0 == 0 { 0 } else { M::modulo() - self.0 })
}
}
impl<M: Modulo> ops::Add for ModInt<M> {
type Output = Self;
fn add(self, rhs: Self) -> Self {
let s = self.0 + rhs.0;
Self::new(if s < M::modulo() { s } else { s - M::modulo() })
}
}
impl<M: Modulo> ops::Sub for ModInt<M> {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
Self::new(if self.0 >= rhs.0 {
self.0 - rhs.0
} else {
M::modulo() + self.0 - rhs.0
})
}
}
impl<M: Modulo> ops::Mul for ModInt<M> {
type Output = Self;
fn mul(self, rhs: Self) -> Self {
Self::new((self.0 as u64 * rhs.0 as u64 % M::modulo() as u64) as u32)
}
}
impl<M: Modulo> ops::Div for ModInt<M> {
type Output = Self;
fn div(self, rhs: Self) -> Self {
self * rhs.inv()
}
}
macro_rules! op_impl {
($($Op:ident $op:ident $OpAssign:ident $op_assign:ident)*) => {
$(impl<M: Modulo> ops::$Op<&Self> for ModInt<M> {
type Output = Self;
fn $op(self, rhs: &Self) -> Self {
self.$op(*rhs)
}
}
impl<M: Modulo> ops::$Op<ModInt<M>> for &ModInt<M> {
type Output = ModInt<M>;
fn $op(self, rhs: ModInt<M>) -> ModInt<M> {
(*self).$op(rhs)
}
}
impl<M: Modulo> ops::$Op<&ModInt<M>> for &ModInt<M> {
type Output = ModInt<M>;
fn $op(self, rhs: &ModInt<M>) -> ModInt<M> {
(*self).$op(*rhs)
}
}
impl<M: Modulo> ops::$OpAssign for ModInt<M> {
fn $op_assign(&mut self, rhs: Self) {
*self = ops::$Op::$op(*self, rhs);
}
}
impl<M: Modulo> ops::$OpAssign<&ModInt<M>> for ModInt<M> {
fn $op_assign(&mut self, rhs: &ModInt<M>) {
self.$op_assign(*rhs);
}
})*
};
}
op_impl! {
Add add AddAssign add_assign
Sub sub SubAssign sub_assign
Mul mul MulAssign mul_assign
Div div DivAssign div_assign
}
impl<M: Modulo> std::iter::Sum for ModInt<M> {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(ModInt::new(0), |x, y| x + y)
}
}
impl<M: Modulo> std::iter::Product for ModInt<M> {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(ModInt::new(1), |x, y| x * y)
}
}
pub trait Pow<T> {
fn pow(self, n: T) -> Self;
}
impl<M: Modulo> Pow<u32> for ModInt<M> {
fn pow(mut self, mut n: u32) -> Self {
let mut y = Self::new(1);
while n > 0 {
if n % 2 == 1 {
y *= self;
}
self *= self;
n /= 2;
}
y
}
}
macro_rules! mod_int_pow_impl {
($($T:ident)*) => {
$(impl<M: Modulo> Pow<$T> for ModInt<M> {
fn pow(self, n: $T) -> Self {
self.pow(n.rem_euclid(M::modulo() as $T - 1) as u32)
}
})*
};
}
mod_int_pow_impl!(isize i32 i64 usize u64);
macro_rules! mod_int_from_impl {
($($T:ident)*) => {
$(impl<M: Modulo> From<$T> for ModInt<M> {
#[allow(unused_comparisons)]
fn from(x: $T) -> Self {
if M::modulo() <= $T::max_value() as u32 {
Self::new(x.rem_euclid(M::modulo() as $T) as u32)
} else if x < 0 {
Self::new((M::modulo() as i32 + x as i32) as u32)
} else {
Self::new(x as u32)
}
}
})*
}
}
mod_int_from_impl!(isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128);
impl<M> Copy for ModInt<M> {}
impl<M> Clone for ModInt<M> {
fn clone(&self) -> Self {
*self
}
}
impl<M: Modulo> Default for ModInt<M> {
fn default() -> Self {
Self::new(0)
}
}
impl<M> cmp::PartialEq for ModInt<M> {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl<M> cmp::Eq for ModInt<M> {}
impl<M> cmp::PartialOrd for ModInt<M> {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl<M> cmp::Ord for ModInt<M> {
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.0.cmp(&other.0)
}
}
impl<M> std::hash::Hash for ModInt<M> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.0.hash(state);
}
}
impl<M> fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl<M> fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
// -----------------------------------------------------------------------------
fn main() -> io::Result<()> {
std::thread::Builder::new()
.stack_size(1 << 26)
.spawn(|| {
run(
Scanner::new(io::stdin().lock()),
io::BufWriter::new(io::stdout().lock()),
)
})?
.join()
.unwrap();
Ok(())
}
#[macro_export]
macro_rules! w {
($($arg:tt)*) => { write!($($arg)*).unwrap(); }
}
#[macro_export]
macro_rules! wln {
($dst:expr $(, $($arg:tt)*)?) => {{
writeln!($dst $(, $($arg)*)?).unwrap();
#[cfg(debug_assertions)]
$dst.flush().unwrap();
}}
}
#[macro_export]
macro_rules! e {
($($t:tt)*) => {
#[cfg(debug_assertions)]
eprint!($($t)*)
}
}
#[macro_export]
macro_rules! eln {
($($t:tt)*) => {
#[cfg(debug_assertions)]
eprintln!($($t)*)
}
}
#[macro_export]
macro_rules! d {
($h:expr, $($t:expr),* $(,)?) => {{
e!("[{}:{}] {} = {:?}", file!(), line!(), stringify!($h), $h);
$(e!(", {} = {:?}", stringify!($t), $t);)*
eln!();
}};
($h:expr) => { d!($h,) };
() => { eln!("[{}:{}]", file!(), line!()) }
}
pub mod kyoproio {
use std::{
io::prelude::*,
iter::FromIterator,
marker::PhantomData,
mem::{self, MaybeUninit},
str,
};
pub trait Input {
fn bytes(&mut self) -> &[u8];
fn str(&mut self) -> &str {
str::from_utf8(self.bytes()).unwrap()
}
fn parse<T: Parse>(&mut self) -> T {
T::parse(self)
}
fn parse_iter<T: Parse>(&mut self) -> ParseIter<T, Self> {
ParseIter(self, PhantomData)
}
fn collect<T: Parse, B: FromIterator<T>>(&mut self, n: usize) -> B {
self.parse_iter().take(n).collect()
}
fn map<T: Parse, U, F: FnMut(T) -> U, B: FromIterator<U>>(
&mut self,
n: usize,
f: F,
) -> B {
self.parse_iter().take(n).map(f).collect()
}
}
impl<I: Input> Input for &mut I {
fn bytes(&mut self) -> &[u8] {
(**self).bytes()
}
}
pub struct Scanner<R> {
src: R,
buf: Vec<u8>,
pos: usize,
len: usize,
}
impl<R: Read> Scanner<R> {
pub fn new(src: R) -> Self {
Self {
src,
buf: vec![0; 1 << 16],
pos: 0,
len: 0,
}
}
fn read(&mut self) -> usize {
if self.pos > 0 {
self.buf.copy_within(self.pos..self.len, 0);
self.len -= self.pos;
self.pos = 0;
} else if self.len >= self.buf.len() {
self.buf.resize(2 * self.buf.len(), 0);
}
let n = self.src.read(&mut self.buf[self.len..]).unwrap();
self.len += n;
assert!(self.len <= self.buf.len());
n
}
}
impl<R: Read> Input for Scanner<R> {
fn bytes(&mut self) -> &[u8] {
loop {
while let Some(d) = unsafe { self.buf.get_unchecked(self.pos..self.len) }
.iter()
.position(u8::is_ascii_whitespace)
{
let p = self.pos;
self.pos += d + 1;
if d > 0 {
return unsafe { self.buf.get_unchecked(p..p + d) };
}
}
if self.read() == 0 {
let p = self.pos;
self.pos = self.len;
return unsafe { self.buf.get_unchecked(p..self.len) };
}
}
}
}
pub struct ParseIter<'a, T, I: ?Sized>(&'a mut I, PhantomData<*const T>);
impl<'a, T: Parse, I: Input + ?Sized> Iterator for ParseIter<'a, T, I> {
type Item = T;
fn next(&mut self) -> Option<T> {
Some(self.0.parse())
}
fn size_hint(&self) -> (usize, Option<usize>) {
(!0, None)
}
}
pub trait Parse: Sized {
fn parse<I: Input + ?Sized>(src: &mut I) -> Self;
}
impl Parse for Vec<u8> {
fn parse<I: Input + ?Sized>(src: &mut I) -> Self {
src.bytes().to_owned()
}
}
macro_rules! from_str {
($($T:ty)*) => {$(
impl Parse for $T {
fn parse<I: Input + ?Sized>(src: &mut I) -> Self {
src.str().parse::<$T>().unwrap()
}
}
)*}
}
from_str!(String char bool f32 f64);
macro_rules! int {
($($I:ty: $U:ty)*) => {$(
impl Parse for $I {
fn parse<I: Input + ?Sized>(src: &mut I) -> Self {
let f = |s: &[u8]| s.iter().fold(0, |x, b| 10 * x + (b & 0xf) as $I);
let s = src.bytes();
if let Some((&b'-', t)) = s.split_first() { -f(t) } else { f(s) }
}
}
impl Parse for $U {
fn parse<I: Input + ?Sized>(src: &mut I) -> Self {
src.bytes().iter().fold(0, |x, b| 10 * x + (b & 0xf) as $U)
}
}
)*}
}
int!(isize:usize i8:u8 i16:u16 i32:u32 i64:u64 i128:u128);
macro_rules! tuple {
($H:ident $($T:ident)*) => {
impl<$H: Parse, $($T: Parse),*> Parse for ($H, $($T),*) {
fn parse<I: Input + ?Sized>(src: &mut I) -> Self {
($H::parse(src), $($T::parse(src)),*)
}
}
tuple!($($T)*);
};
() => {}
}
tuple!(A B C D E F G);
macro_rules! array {
($($N:literal)*) => {$(
impl<T: Parse> Parse for [T; $N] {
fn parse<I: Input + ?Sized>(src: &mut I) -> Self {
unsafe {
let mut arr: [MaybeUninit<T>; $N] = MaybeUninit::uninit().assume_init();
for elem in &mut arr {
*elem = MaybeUninit::new(src.parse());
}
mem::transmute_copy(&arr)
}
}
}
)*}
}
array!(1 2 3 4 5 6 7 8);
}
cotton_fn_