結果

問題 No.1430 Coup de Coupon
ユーザー Plan8Plan8
提出日時 2021-03-14 14:48:36
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
MLE  
実行時間 -
コード長 7,027 bytes
コンパイル時間 2,613 ms
コンパイル使用メモリ 219,072 KB
実行使用メモリ 813,608 KB
最終ジャッジ日時 2024-11-06 04:44:30
合計ジャッジ時間 5,166 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 4 ms
6,816 KB
testcase_04 AC 4 ms
6,816 KB
testcase_05 AC 4 ms
6,820 KB
testcase_06 MLE -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<long long> VL;
typedef vector<vector<long long>> VVL;
typedef pair<int,int> Pair;
typedef tuple<int,int,int> tpl;

#define ALL(a)  (a).begin(),(a).end()
#define SORT(c) sort((c).begin(),(c).end())
#define REVERSE(c) reverse((c).begin(),(c).end())
#define EXIST(m,v) (m).find((v)) != (m).end()
#define LB(a,x) lower_bound((a).begin(), (a).end(), x) - (a).begin()
#define UB(a,x) upper_bound((a).begin(), (a).end(), x) - (a).begin()

#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define REP(i,n)  FOR(i,0,n)
#define RFOR(i,a,b) for(int i=(a)-1;i>=(b);--i)
#define RREP(i,n) RFOR(i,n,0)

#define en "\n"

constexpr double EPS = 1e-9;
constexpr double PI  = 3.1415926535897932;
constexpr int INF = 2147483647;
constexpr long long LINF = 1LL<<60;
constexpr long long MOD = 1000000007; // 998244353;

template<class T> inline bool chmax(T& a, T b){if(a<b){a=b;return true;}return false;}
template<class T> inline bool chmin(T& a, T b){if(a>b){a=b;return true;}return false;}

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
        g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{0, s});
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{dist[e.to], e.to});
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost = cost;
        }
        return result;
    }

  private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

void Main(){
    int N,C; cin >> N >> C;
    int ans = 0;
    VI P(N); REP(i,N) cin >> P[i], ans += P[i];

    int GETA = 100000;

    mcf_graph<int,int> g(N+C+2);
    REP(i,C){
        int t,x; cin >> t >> x;
        if(t == 1){
            REP(j,N){
                int cost = P[j] - max(0,P[j]-x);
                g.add_edge(i,C+j,1,GETA-cost);
            }
        }
        else{
            REP(j,N){
                int cost = P[j] - P[j] * (100-x) / 100;
                g.add_edge(i,C+j,1,GETA-cost);
            }
        }
    }

    REP(i,C) g.add_edge(N+C,i,1,0);
    REP(i,N) g.add_edge(C+i,N+C+1,1,0);

    auto p = g.flow(N+C,N+C+1,min(N,C));
    int d = -p.second + p.first*GETA;
    ans -= d;
    cout << ans << en;

    return;
}

int main(void){
    cin.tie(0);cout.tie(0);ios_base::sync_with_stdio(0);cout<<fixed<<setprecision(15);
    int t=1; //cin>>t;
    REP(_,t) Main();
    return 0;
}
0