結果
問題 | No.132 点と平面との距離 |
ユーザー |
![]() |
提出日時 | 2021-03-20 22:43:30 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 37 ms / 5,000 ms |
コード長 | 6,608 bytes |
コンパイル時間 | 1,756 ms |
コンパイル使用メモリ | 173,132 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-21 12:30:18 |
合計ジャッジ時間 | 2,471 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 3 |
ソースコード
#include <bits/stdc++.h>//#include <atcoder/all>//using namespace atcoder;#pragma GCC target ("avx")#pragma GCC optimization ("O3")#pragma GCC optimization ("unroll-loops")using namespace std;typedef vector<int> VI;typedef vector<VI> VVI;typedef vector<string> VS;typedef pair<int, int> PII;typedef pair<int, int> pii;typedef pair<long long, long long> PLL;typedef pair<int, PII> TIII;typedef long long ll;typedef long double ld;typedef unsigned long long ull;#define FOR(i, s, n) for (int i = s; i < (int)n; ++i)#define REP(i, n) FOR(i, 0, n)#define rep(i, a, b) for (int i = a; i < (b); ++i)#define trav(a, x) for (auto &a : x)#define all(x) x.begin(), x.end()#define MOD 1000000007template<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;}template<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;}const double EPS = 1e-6, PI = acos(-1);const double pi = 3.141592653589793238462643383279;//ここから編集typedef string::const_iterator State;ll GCD(ll a, ll b){return (b==0)?a:GCD(b, a%b);}ll LCM(ll a, ll b){return a/GCD(a, b) * b;}template< int mod >struct ModInt {int x;ModInt() : x(0) {}ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;}ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;}ModInt &operator*=(const ModInt &p) {x = (int) (1LL * x * p.x % mod);return *this;}ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}ModInt operator-() const { return ModInt(-x); }ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }bool operator==(const ModInt &p) const { return x == p.x; }bool operator!=(const ModInt &p) const { return x != p.x; }ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;while(b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return ModInt(u);}ModInt pow(int64_t n) const {ModInt ret(1), mul(x);while(n > 0) {if(n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}friend ostream &operator<<(ostream &os, const ModInt &p) {return os << p.x;}friend istream &operator>>(istream &is, ModInt &a) {int64_t t;is >> t;a = ModInt< mod >(t);return (is);}static int get_mod() { return mod; }};using modint = ModInt< 998244353 >;template< typename T >struct Combination {vector< T > _fact, _rfact, _inv;Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {_fact[0] = _rfact[sz] = _inv[0] = 1;for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;_rfact[sz] /= _fact[sz];for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];}inline T fact(int k) const { return _fact[k]; }inline T rfact(int k) const { return _rfact[k]; }inline T inv(int k) const { return _inv[k]; }T P(int n, int r) const {if(r < 0 || n < r) return 0;return fact(n) * rfact(n - r);}T C(int p, int q) const {if(q < 0 || p < q) return 0;return fact(p) * rfact(q) * rfact(p - q);}T H(int n, int r) const {if(n < 0 || r < 0) return (0);return r == 0 ? 1 : C(n + r - 1, r);}};int modpow(ll x, ll n, int mod) {if(x == 0) return 0;ll res = 1;while(n) {if(n&1) res = res*x % mod;x = x*x%mod;n >>= 1;}return res;}using DD = double;struct Point3{DD x, y, z;Point3(DD x=0.0, DD y=0.0, DD z=0.0): x(x), y(y), z(z){}friend ostream& operator << (ostream &s, const Point3 &p) {return s << p.x << " " << p.y << " " << p.z;}};inline Point3 operator + (const Point3 &p, const Point3 &q) {return Point3(p.x + q.x, p.y + q.y, p.z + q.z);}inline Point3 operator - (const Point3 &p, const Point3 &q) {return Point3(p.x - q.x, p.y - q.y, p.z - q.z);}inline Point3 operator * (const Point3 &p, DD a) {return Point3(p.x * a, p.y * a, p.z * a);}inline Point3 operator * (DD a, const Point3 &p) {return Point3(a * p.x, a * p.y, a * p.z);}//inline Point3 operator * (const Point3 &p, const Point3 &q) {return Point3(p.x * q.x - p.y * q.y, p.x * q.y + p.y * q.x);}inline Point3 operator / (const Point3 &p, DD a) {return Point3(p.x / a, p.y / a, p.z / a);}//inline Point3 conj(const Point3 &p) {return Point3(p.x, -p.y);}//inline Point3 rot(const Point3 &p, DD ang) {return Point3(cos(ang) * p.x - sin(ang) * p.y, sin(ang) * p.x + cos(ang) * p.y);}//inline Point3 rot90(const Point3 &p) {return Point3(-p.y, p.x);}inline Point3 cross(const Point3 &p, const Point3 &q) {return Point3(p.y * q.z - p.z * q.y, p.z * q.x - p.x * q.z, p.x * q.y - p.y * q.x);}inline DD dot(const Point3 &p, const Point3 &q) {return p.x * q.x + p.y * q.y + p.z * q.z;}inline DD norm(const Point3 &p) {return dot(p, p);}inline DD abs(const Point3 &p) {return sqrt(dot(p, p));}//inline DD amp(const Point3 &p) {DD res = atan2(p.y, p.x); if (res < 0) res += PI*2; return res;}inline bool eq(const Point3 &p, const Point3 &q) {return abs(p - q) < EPS;}//inline bool operator < (const Point3 &p, const Point3 &q) {return (abs(p.x - q.x) > EPS ? p.x < q.x : p.y < q.y);}//inline bool operator > (const Point3 &p, const Point3 &q) {return (abs(p.x - q.x) > EPS ? p.x > q.x : p.y > q.y);}// 参考 http://www.math.s.chiba-u.ac.jp/~yasuda/Chiba/Lec/naiseki.pdfistream& operator>> (istream &is, Point3 &p) {DD x, y, z;is >> x >> y >> z;p = Point3(x, y, z);return is;}int main() {cin.tie(0);ios::sync_with_stdio(false);cout << fixed << setprecision(11);ll n; cin >> n;Point3 P;cin >> P;vector<Point3> X(n);REP(i,n) {cin >> X[i];}double ans = 0;for(int i=0; i<n; i++) {for(int j=i+1; j<n; j++) {for(int k=j+1; k<n; k++) {Point3 ab = X[j]-X[i];Point3 ac = X[k]-X[i];Point3 norm = cross(ab, ac);double a = norm.x, b = norm.y, c = norm.z;double d = - a * X[i].x - b * X[i].y - c * X[i].z;ans += abs(a*P.x+b*P.y+c*P.z+d)/abs(norm);}}}cout << ans << endl;return 0;}