結果
問題 | No.132 点と平面との距離 |
ユーザー | hamray |
提出日時 | 2021-03-20 22:43:30 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 37 ms / 5,000 ms |
コード長 | 6,608 bytes |
コンパイル時間 | 1,756 ms |
コンパイル使用メモリ | 173,132 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-21 12:30:18 |
合計ジャッジ時間 | 2,471 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
5,248 KB |
testcase_01 | AC | 12 ms
5,248 KB |
testcase_02 | AC | 37 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> //#include <atcoder/all> //using namespace atcoder; #pragma GCC target ("avx") #pragma GCC optimization ("O3") #pragma GCC optimization ("unroll-loops") using namespace std; typedef vector<int> VI; typedef vector<VI> VVI; typedef vector<string> VS; typedef pair<int, int> PII; typedef pair<int, int> pii; typedef pair<long long, long long> PLL; typedef pair<int, PII> TIII; typedef long long ll; typedef long double ld; typedef unsigned long long ull; #define FOR(i, s, n) for (int i = s; i < (int)n; ++i) #define REP(i, n) FOR(i, 0, n) #define rep(i, a, b) for (int i = a; i < (b); ++i) #define trav(a, x) for (auto &a : x) #define all(x) x.begin(), x.end() #define MOD 1000000007 template<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;} template<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;} const double EPS = 1e-6, PI = acos(-1); const double pi = 3.141592653589793238462643383279; //ここから編集 typedef string::const_iterator State; ll GCD(ll a, ll b){ return (b==0)?a:GCD(b, a%b); } ll LCM(ll a, ll b){ return a/GCD(a, b) * b; } template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< 998244353 >; template< typename T > struct Combination { vector< T > _fact, _rfact, _inv; Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) { _fact[0] = _rfact[sz] = _inv[0] = 1; for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i; _rfact[sz] /= _fact[sz]; for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1); for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1]; } inline T fact(int k) const { return _fact[k]; } inline T rfact(int k) const { return _rfact[k]; } inline T inv(int k) const { return _inv[k]; } T P(int n, int r) const { if(r < 0 || n < r) return 0; return fact(n) * rfact(n - r); } T C(int p, int q) const { if(q < 0 || p < q) return 0; return fact(p) * rfact(q) * rfact(p - q); } T H(int n, int r) const { if(n < 0 || r < 0) return (0); return r == 0 ? 1 : C(n + r - 1, r); } }; int modpow(ll x, ll n, int mod) { if(x == 0) return 0; ll res = 1; while(n) { if(n&1) res = res*x % mod; x = x*x%mod; n >>= 1; } return res; } using DD = double; struct Point3{ DD x, y, z; Point3(DD x=0.0, DD y=0.0, DD z=0.0): x(x), y(y), z(z){} friend ostream& operator << (ostream &s, const Point3 &p) {return s << p.x << " " << p.y << " " << p.z;} }; inline Point3 operator + (const Point3 &p, const Point3 &q) {return Point3(p.x + q.x, p.y + q.y, p.z + q.z);} inline Point3 operator - (const Point3 &p, const Point3 &q) {return Point3(p.x - q.x, p.y - q.y, p.z - q.z);} inline Point3 operator * (const Point3 &p, DD a) {return Point3(p.x * a, p.y * a, p.z * a);} inline Point3 operator * (DD a, const Point3 &p) {return Point3(a * p.x, a * p.y, a * p.z);} //inline Point3 operator * (const Point3 &p, const Point3 &q) {return Point3(p.x * q.x - p.y * q.y, p.x * q.y + p.y * q.x);} inline Point3 operator / (const Point3 &p, DD a) {return Point3(p.x / a, p.y / a, p.z / a);} //inline Point3 conj(const Point3 &p) {return Point3(p.x, -p.y);} //inline Point3 rot(const Point3 &p, DD ang) {return Point3(cos(ang) * p.x - sin(ang) * p.y, sin(ang) * p.x + cos(ang) * p.y);} //inline Point3 rot90(const Point3 &p) {return Point3(-p.y, p.x);} inline Point3 cross(const Point3 &p, const Point3 &q) {return Point3(p.y * q.z - p.z * q.y, p.z * q.x - p.x * q.z, p.x * q.y - p.y * q.x);} inline DD dot(const Point3 &p, const Point3 &q) {return p.x * q.x + p.y * q.y + p.z * q.z;} inline DD norm(const Point3 &p) {return dot(p, p);} inline DD abs(const Point3 &p) {return sqrt(dot(p, p));} //inline DD amp(const Point3 &p) {DD res = atan2(p.y, p.x); if (res < 0) res += PI*2; return res;} inline bool eq(const Point3 &p, const Point3 &q) {return abs(p - q) < EPS;} //inline bool operator < (const Point3 &p, const Point3 &q) {return (abs(p.x - q.x) > EPS ? p.x < q.x : p.y < q.y);} //inline bool operator > (const Point3 &p, const Point3 &q) {return (abs(p.x - q.x) > EPS ? p.x > q.x : p.y > q.y);} // 参考 http://www.math.s.chiba-u.ac.jp/~yasuda/Chiba/Lec/naiseki.pdf istream& operator>> (istream &is, Point3 &p) { DD x, y, z; is >> x >> y >> z; p = Point3(x, y, z); return is; } int main() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(11); ll n; cin >> n; Point3 P; cin >> P; vector<Point3> X(n); REP(i,n) { cin >> X[i]; } double ans = 0; for(int i=0; i<n; i++) { for(int j=i+1; j<n; j++) { for(int k=j+1; k<n; k++) { Point3 ab = X[j]-X[i]; Point3 ac = X[k]-X[i]; Point3 norm = cross(ab, ac); double a = norm.x, b = norm.y, c = norm.z; double d = - a * X[i].x - b * X[i].y - c * X[i].z; ans += abs(a*P.x+b*P.y+c*P.z+d)/abs(norm); } } } cout << ans << endl; return 0; }