結果

問題 No.1458 Segment Function
ユーザー souta-1326
提出日時 2021-03-31 21:50:19
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 10,955 bytes
コンパイル時間 3,898 ms
コンパイル使用メモリ 233,684 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-12 13:35:40
合計ジャッジ時間 5,018 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 32
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#include<atcoder/all>
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define PI arccos(-1)
#define all(v) (v).begin(),(v).end()
#define fi first
#define se second
#define mpa make_pair
#define emb emplace_back
#define endll "\n"
using namespace std;
using namespace atcoder;
using ll = long long;
template<class T> constexpr inline void input(vector<T> &v){
for(int i=0;i<v.size();i++) cin >> v[i];
}
template<class T,class S> constexpr inline void input(vector<T> &v,vector<S> &u){
for(int i=0;i<v.size();i++) cin >> v[i] >> u[i];
}
template<class T,class S,class R> constexpr inline void input(vector<T> &v,vector<S> &u,vector<R> &t){
for(int i=0;i<v.size();i++) cin >> v[i] >> u[i] >> t[i];
}
template<class T> constexpr inline void input(vector<vector<T>> &v){
for(int i=0;i<v.size();i++){
for(int j=0;j<v[0].size();j++) cin >> v[i][j];
}
}
template<class T> constexpr inline void output(vector<T> &v,bool space = true){
if(space){
for(int i=0;i<v.size()-1;i++) cout << v[i] << " ";
cout << v.back() << endll;
}
else{
for(int i=0;i<v.size();i++) cout << v[i] << endll;
}
}
template<class T,class S> constexpr inline void output(vector<T> &v,vector<S> &u){
for(int i=0;i<v.size();i++) cout << v[i] << " " << u[i] << endll;
}
template<class T,class S,class R> constexpr inline void output(vector<T> &v,vector<S> &u,vector<R> &t){
for(int i=0;i<v.size();i++) cout << v[i] << " " << u[i] << " " << t[i] << endll;
}
template<class T> constexpr inline void output(vector<vector<T>> &v){
for(int i=0;i<v.size();i++){
for(int j=0;j<v[0].size()-1;j++) cout << v[i][j] << " ";
cout << v[i].back() << endll;
}
}
template<class T> constexpr inline bool on(T n,T i){
return n&(1<<i);
}
template<class T,class S> constexpr inline T ceil(T x,S y){
if(x == 0) return 0;
else return (x-1)/y+1;
}
template<class T> constexpr bool isprime(T x){
for(T i=2;i*i<=x;i++){
if(x%i == 0) return false;
}
return true;
}
vector<bool> isprime_format(int n){
vector<bool> P(n+1,1);P[0] = P[1] = 1;
for(int i=2;i*i<=n;i++){
if(!P[i]) continue;
for(int j=i+i;j<=n;j+=i) P[j] = false;
}
return P;
}
vector<int> prime_format(int n){
vector<bool> P = isprime_format(n);
vector<int> ans;
for(int i=2;i<=n;i++){
if(P[i]) ans.emb(i);
}
return ans;
}
template<class T> vector<T> topo_sort(T N,vector<vector<T>> G){
T i,j,f;
vector<int> cnt(N);
for(i=0;i<N;i++){
for(j=0;j<G[i].size();j++) cnt[G[i][j]]++;
}
vector<T> q;
for(i=0;i<N;i++){
if(cnt[i] == 0) q.emb(i);
}
for(f=0;f<N;f++){
for(i=0;i<G[q[f]].size();i++){
cnt[G[q[f]][i]]--;
if(cnt[G[q[f]][i]] == 0){
q.emb(G[q[f]][i]);
}
}
}
return q;
}
template<class T> vector<T> dijkstra(T N,vector<T> st,vector<vector<pair<T,T>>> G){
T fn,fp,i;
priority_queue<pair<T,T>,vector<pair<T,T>>,greater<>> q;
vector<T> D(N,-1);
for(i=0;i<st.size();i++){
D[st[i]] = 0;
q.push(mpa(0,st[i]));
}
while(!q.empty()){
fn = q.top().fi;fp = q.top().se;q.pop();
if(D[fp] < fn) continue;
for(i=0;i<G[fp].size();i++){
if(D[G[fp][i].fi] == -1 || D[G[fp][i].fi] > D[fp]+G[fp][i].se){
D[G[fp][i].fi] = D[fp]+G[fp][i].se;
q.push(mpa(D[G[fp][i].fi],G[fp][i].fi));
}
}
}
return D;
}
template<class T> vector<T> dijkstra(T N,T st,vector<vector<pair<T,T>>> G){
return dijkstra(N,vector<T>({st}),G);
}
template<class T> class WarshallFloyd{
T N,inf;
vector<vector<T>> D;
vector<vector<T>> prev;
bool isdirect;
void setting(){
for(T k=0;k<N;k++){
for(T i=0;i<N;i++){
for(T j=0;j<N;j++){
if(D[i][k] == inf || D[k][j] == inf) continue;
if(D[i][j] > D[i][k]+D[k][j]){
D[i][j] > D[i][k]+D[k][j];
prev[i][j] = prev[k][j];
}
}
}
}
}
public:
WarshallFloyd(T N,vector<T> &u,vector<T> &v,vector<T> &c,T inf,bool isdirect){
this->N = N;
this->inf = inf;
this->isdirect = isdirect;
assert(u.size() == v.size());
vector<vector<T>>(N,vector<T>(N,inf)).swap(D);
vector<vector<T>>(N,vector<T>(N)).swap(prev);
for(T i=0;i<N;i++){
for(T j=0;j<N;j++) prev[i][j] = i;
}
for(T i=0;i<N;i++) D[i][i] = 0;
for(T i=0;i<u.size();i++){
D[u[i]][v[i]] = min(D[u[i]][v[i]],c[i]);
if(!isdirect) D[v[i]][u[i]] = min(D[v[i]][u[i]],c[i]);
}
setting();
}
WarshallFloyd(vector<vector<T>> D,T inf,bool isdirect){
this->N = D.size();
this->inf = inf;
this->D = D;
this->isdirect = isdirect;
vector<vector<T>>(N,vector<T>(N)).swap(prev);
for(T i=0;i<N;i++){
for(T j=0;j<N;j++) prev[i][j] = i;
}
setting();
}
void append(T s,T t,T c){
for(T i=0;i<N;i++){
for(T j=0;j<N;j++){
if(D[i][s] != inf && D[t][c] != inf){
if(D[i][j] > D[i][s]+c+D[t][j]){
D[i][j] = D[i][s]+c+D[t][j];
prev[i][j] = prev[t][j];
}
}
if(!isdirect && D[i][t] != inf && D[s][j] != inf){
if(D[i][j] > D[i][t]+c+D[s][j]){
D[i][j] = D[i][t]+c+D[s][j];
prev[i][j] = prev[s][j];
}
}
}
}
}
T at(T i,T j){
return D[i][j];
}
vector<T> Path(T s,T t){
vector<T> ret;
ret.emb(t);
while(t != s) ret.emb(t=prev[s][t]);
reverse(all(ret));
return ret;
}
bool negative_cycle(){
for(T i=0;i<N;i++){
if(D[i][i] < 0) return true;
}
return false;
}
vector<vector<T>> Graph(){
return D;
}
};
template<class T> class mat{
vector<vector<T>> V;
public:
constexpr mat(){}
constexpr mat(int N,int M){
vector<vector<T>>(N,vector<T>(M)).swap(this->V);
}
constexpr mat(vector<vector<T>> &v){
this->V = v;
}
constexpr int height(){return V.size();}
constexpr int width(){return V[0].size();}
constexpr T &val(int a,int b){return V[a][b];}
constexpr vector<T> val(int a){return V[a];}
constexpr vector<vector<T>> val(){return V;}
//ret(mat[i][j],elem(a[i][k],b[k][j]))
constexpr mat calc(mat &b,function<T(T,T)> ret = [](T x,T y){return x+y;},function<T(T,T)> elem = [](T x,T y){return x*y;})const{
vector<vector<T>> c(V.size(),vector<T>(b.width()));
for(int i=0;i<V.size();i++){
for(int j=0;j<b.width();j++){
for(int k=0;k<b.height();k++) c[i][j] = ret(c[i][j],elem(V[i][k],b.val(k,j)));
}
}
return mat(c);
}
constexpr mat pow(ll y,function<T(T,T)> ret = [](T x,T y){return x+y;},function<T(T,T)> elem = [](T x,T y){return x*y;}) const {
mat x = *this,z;
while(y){
if(y&1){
if(z.height() == 0) z = x;
else z = z.calc(x,ret,elem);
}
x = x.calc(x,ret,elem);
y >>= 1;
}
return z;
}
};
template<class T> class frac{
T bunsi,bunbo;
constexpr void setting() noexcept {
T g = gcd(bunsi,bunbo);
bunsi /= g;bunbo /= g;
if(bunbo < 0){
bunsi = -bunsi;bunbo = -bunbo;
}
}
public:
constexpr frac(T Bunsi = 0,T Bunbo = 1) noexcept {
bunsi = Bunsi;bunbo = Bunbo;
setting();
}
constexpr T &Bunsi() noexcept {return bunsi;}
constexpr const T &Bunsi() const noexcept {return bunsi;}
constexpr T &Bunbo() noexcept {return bunbo;}
constexpr const T &Bunbo() const noexcept {return bunbo;}
constexpr frac<T> &operator+=(const frac<T> &rhs) noexcept {
bunsi = bunsi*rhs.bunbo+bunbo*rhs.bunsi;
bunbo *= rhs.bunbo;
setting();
return *this;
}
constexpr frac<T> &operator-=(const frac<T> &rhs) noexcept {
bunsi = bunsi*rhs.bunbo-bunbo*rhs.bunsi;
bunbo *= rhs.bunbo;
setting();
return *this;
}
constexpr frac<T> &operator*=(const frac<T> &rhs) noexcept {
bunbo *= rhs.bunbo;
bunsi *= rhs.bunsi;
setting();
return *this;
}
constexpr frac<T> &operator/=(const frac<T> &rhs) noexcept {
bunbo *= rhs.bunsi;
bunsi *= rhs.bunbo;
setting();
return *this;
}
constexpr frac<T> operator+(const frac<T> &rhs) const noexcept {return frac(*this) += rhs;}
constexpr frac<T> operator-(const frac<T> &rhs) const noexcept {return frac(*this) -= rhs;}
constexpr frac<T> operator*(const frac<T> &rhs) const noexcept {return frac(*this) *= rhs;}
constexpr frac<T> operator/(const frac<T> &rhs) const noexcept {return frac(*this) /= rhs;}
constexpr bool operator<(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo < bunbo*rhs.bunsi;}
constexpr bool operator>(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo > bunbo*rhs.bunsi;}
constexpr bool operator>=(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo >= bunbo*rhs.bunsi;}
constexpr bool operator<=(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo <= bunbo*rhs.bunsi;}
constexpr bool operator==(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo == bunbo*rhs.bunsi;}
constexpr bool operator!=(const frac<T> &rhs) const noexcept {return bunsi*rhs.bunbo != bunbo*rhs.bunsi;}
};
template<class T> class line{
//y = ax+b;
frac<T> a,b;
bool a_inf;
T inf_x;
public:
constexpr line(T x1 = 0,T y1 = 0,T x2 = 1,T y2 = 1) noexcept {
if(x1 != x2){
a_inf = false;
a = frac<T>(y2-y1,x2-x1);
b = frac<T>(y1)-frac<T>(x1)*a;
}
else{
a_inf = true;
inf_x = x1;
}
}
constexpr frac<T> &slope() noexcept {return a;}
constexpr const frac<T> &slope() const noexcept {return a;}
constexpr frac<T> &inter() noexcept {return b;}
constexpr const frac<T> &inter() const noexcept {return b;}
constexpr bool match(const line &rhs) const noexcept {
if(!a_inf && !rhs.a_inf) return a==rhs.a && b==rhs.b;
else if(a_inf^rhs.a_inf) return false;
else return inf_x==rhs.inf_x;
}
constexpr bool parallel(const line &rhs) const noexcept {
if(!a_inf && !rhs.a_inf) return a==rhs.a;
else return !(a_inf^rhs.a_inf);
}
constexpr pair<frac<T>,frac<T>> point(const line &rhs) const noexcept {
//ax+b = y
//cx+d = y
//(a-c)x= d-b
if(a_inf){
frac<T> x(inf_x);
frac<T> y = rhs.a*x+rhs.b;
return make_pair(x,y);
}
else if(rhs.a_inf){
frac<T> x(rhs.inf_x);
frac<T> y = a*x+b;
return make_pair(x,y);
}
else{
frac<T> x = (rhs.b-b)/(a-rhs.a);
frac<T> y = a*x+b;
return make_pair(x,y);
}
}
};
int main(){
cin.tie(0);ios::sync_with_stdio(false);
//-----------------------------------------------
string P,N;cin >> P >> N;
ll jn;
if(N.size() > 18) jn = 1000000000000000000;
else jn = stoi(N);
if(jn == 0){
cout << P << endll;return 0;
}
ll pp = 0;
ll F[10] = {6,2,5,5,4,5,6,4,7,6};
for(char c:P){
if(c == '-') pp+=1;
else pp += F[c-'0'];
}
jn--;
while(jn){
ll np = 0;
while(pp){
np += F[pp%10];
pp /= 10;
}
pp = np;
if(4 <= pp && pp <= 6){
cout << pp << endll;return 0;
}
jn--;
}
cout << pp << endll;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0