結果

問題 No.1099 Range Square Sum
ユーザー rokahikou1
提出日時 2021-04-07 16:49:41
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 180 ms / 2,000 ms
コード長 7,731 bytes
コンパイル時間 1,745 ms
コンパイル使用メモリ 181,536 KB
実行使用メモリ 21,280 KB
最終ジャッジ日時 2024-06-22 17:50:58
合計ジャッジ時間 5,882 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma region Macros
#include <bits/stdc++.h>
#define rep(i, n) for(int(i) = 0; (i) < (n); (i)++)
#define FOR(i, m, n) for(int(i) = (m); (i) < (n); (i)++)
#define ALL(v) (v).begin(), (v).end()
#define LLA(v) (v).rbegin(), (v).rend()
#define SZ(v) (int)(v).size()
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define DOUBLE(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define STRING(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VEC2(type, name, height, width) \
vector<vector<type>> name(height, vector<type>(width)); \
read(name)
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using Graph = vector<vector<int>>;
template <typename T> struct edge {
int from, to;
T cost;
edge(int f, int t, T c) : from(f), to(t), cost(c) {}
};
template <typename T> using WGraph = vector<vector<edge<T>>>;
const int INF = 1 << 30;
const ll LINF = 1LL << 60;
const int MOD = 1e9 + 7;
const char newl = '\n';
template <class T> inline vector<T> make_vec(size_t a, T val) {
return vector<T>(a, val);
}
template <class... Ts> inline auto make_vec(size_t a, Ts... ts) {
return vector<decltype(make_vec(ts...))>(a, make_vec(ts...));
}
void read() {}
template <class T> inline void read(T &a) { cin >> a; }
template <class T, class S> inline void read(pair<T, S> &p) {
read(p.first), read(p.second);
}
template <class T> inline void read(vector<T> &v) {
for(auto &&a : v)
read(a);
}
template <class Head, class... Tail>
inline void read(Head &head, Tail &...tail) {
read(head), read(tail...);
}
template <class T> void write(const T &a) { cout << a << '\n'; }
template <class T> void write(const vector<T> &a) {
for(int i = 0; i < a.size(); i++)
cout << a[i] << (i + 1 == a.size() ? '\n' : ' ');
}
template <class Head, class... Tail>
void write(const Head &head, const Tail &...tail) {
cout << head << ' ';
write(tail...);
}
template <class T> void writel(const T &a) { cout << a << '\n'; }
template <class T> void writel(const vector<T> &a) {
for(int i = 0; i < a.size(); i++)
cout << a[i] << '\n';
}
template <class Head, class... Tail>
void writel(const Head &head, const Tail &...tail) {
cout << head << '\n';
write(tail...);
}
template <class T> auto sum(const vector<T> &a) {
return accumulate(ALL(a), T(0));
}
template <class T> auto min(const vector<T> &a) { return *min_element(ALL(a)); }
template <class T> auto max(const vector<T> &a) { return *max_element(ALL(a)); }
template <class T> inline void chmax(T &a, T b) { (a < b ? a = b : a); }
template <class T> inline void chmin(T &a, T b) { (a > b ? a = b : a); }
struct IO {
IO() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(10);
}
} io;
#pragma endregion
// LazySegmentTree
template <class Monoid, class Operator = Monoid> class LazySegTree {
private:
using F = function<Monoid(Monoid, Monoid)>;
using G = function<Monoid(Monoid, Operator)>;
using H = function<Operator(Operator, Operator)>;
size_t n;
const F f;
const G g;
const H h;
const Monoid e;
const Operator oe;
vector<Monoid> node;
vector<Operator> lazy;
//
inline Monoid eval(int k) {
return lazy[k] == oe ? node[k] : g(node[k], lazy[k]);
}
//
inline void propagate(int k) {
if(lazy[k] != oe) {
lazy[2 * k] = h(lazy[2 * k], lazy[k]);
lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);
node[k] = eval(k);
lazy[k] = oe;
}
}
//
inline void thrust(int k) {
for(int i = 31 - __builtin_clz(k); i > 0; i--) {
if((k >> i) >= 1)
propagate(k >> i);
}
}
//
inline void recalc(int k) {
while(k > 1) {
k >>= 1;
node[k] = f(eval(2 * k), eval(2 * k + 1));
}
}
public:
LazySegTree(int sz, const F _f, const G _g, const H _h, const Monoid &_e,
const Operator &_oe)
: f(_f), g(_g), h(_h), e(_e), oe(_oe) {
n = 1;
while(n < sz) {
n <<= 1;
}
node.resize(2 * n, e);
lazy.resize(2 * n, oe);
}
LazySegTree(const vector<Monoid> &v, const F _f, const G _g, const H _h,
const Monoid &_e, const Operator &_oe)
: f(_f), g(_g), h(_h), e(_e), oe(_oe) {
int sz = v.size();
n = 1;
while(n < sz) {
n <<= 1;
}
node.resize(2 * n, e);
lazy.resize(2 * n, oe);
for(int i = 0; i < sz; i++)
set(i, v[i]);
build();
}
void set(int k, const Monoid &x) { node[k + n] = x; }
void build() {
for(int i = n - 1; i > 0; i--)
node[i] = f(node[2 * i], node[2 * i + 1]);
}
// [L,R)
void update(int L, int R, Operator x) {
L += n, R += n;
int L0 = L / (L & -L), R0 = R / (R & -R) - 1;
thrust(L0);
thrust(R0);
while(L < R) {
if(L & 1) {
lazy[L] = h(x, lazy[L]);
L++;
}
if(R & 1) {
R--;
lazy[R] = h(lazy[R], x);
}
L >>= 1;
R >>= 1;
}
recalc(L0);
recalc(R0);
}
// [L,R)
Monoid query(int L, int R) {
L += n, R += n;
thrust(L / (L & -L));
thrust(R / (R & -R) - 1);
Monoid vl = e, vr = e;
while(L < R) {
if(L & 1) {
vl = f(vl, eval(L));
L++;
}
if(R & 1) {
R--;
vr = f(eval(R), vr);
}
L >>= 1;
R >>= 1;
}
return f(vl, vr);
}
Monoid at(int k) { return query(k, k + 1); }
};
struct S {
ll num, sum, sqsum;
};
using F = ll;
S op(S a, S b) { return S{a.num + b.num, a.sum + b.sum, a.sqsum + b.sqsum}; }
S mapping(S a, F f) {
return S{a.num, a.sum + f * a.num, a.sqsum + f * f * a.num + a.sum * 2 * f};
};
F composition(F f, F g) { return f + g; }
S e() { return S{1, 0, 0}; }
F id() { return 0; }
int main() {
INT(n);
VEC(ll, a, n);
LazySegTree<S, F> segtree(n, op, mapping, composition, e(), id());
rep(i, n) segtree.set(i, S{1, a[i], a[i] * a[i]});
segtree.build();
INT(Q);
rep(i, Q) {
INT(q);
if(q == 1) {
INT(l, r);
LL(x);
l--;
segtree.update(l, r, x);
} else {
INT(l, r);
l--;
write(segtree.query(l, r).sqsum);
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0