結果

問題 No.1307 Rotate and Accumulate
ユーザー ningenMeningenMe
提出日時 2021-04-08 00:59:15
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 9,493 bytes
コンパイル時間 531 ms
コンパイル使用メモリ 70,432 KB
最終ジャッジ日時 2024-11-15 00:59:54
合計ジャッジ時間 1,800 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
/home/tfuruta/repos/compro-library/lib/math/NumberTheoreticalTransform.cpp:14:12: error: 'unordered_map' does not name a type

ソースコード

diff #

#line 1 "NumberTheoreticalTransform.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1307"

#include <vector>
#include <iostream>
#include <algorithm>
#include <array>
using namespace std;
#line 1 "/home/tfuruta/repos/compro-library/lib/util/ModInt.cpp"
/*
 * @title ModInt
 * @docs md/util/ModInt.md
 */
template<long long mod> class ModInt {
public:
    long long x;
    constexpr ModInt():x(0) {}
    constexpr ModInt(long long y) : x(y>=0?(y%mod): (mod - (-y)%mod)%mod) {}
    ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;}
    ModInt &operator+=(const long long y) {ModInt p(y);if((x += p.x) >= mod) x -= mod;return *this;}
    ModInt &operator+=(const int y) {ModInt p(y);if((x += p.x) >= mod) x -= mod;return *this;}
    ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;}
    ModInt &operator-=(const long long y) {ModInt p(y);if((x += mod - p.x) >= mod) x -= mod;return *this;}
    ModInt &operator-=(const int y) {ModInt p(y);if((x += mod - p.x) >= mod) x -= mod;return *this;}
    ModInt &operator*=(const ModInt &p) {x = (x * p.x % mod);return *this;}
    ModInt &operator*=(const long long y) {ModInt p(y);x = (x * p.x % mod);return *this;}
    ModInt &operator*=(const int y) {ModInt p(y);x = (x * p.x % mod);return *this;}
    ModInt &operator^=(const ModInt &p) {x = (x ^ p.x) % mod;return *this;}
    ModInt &operator^=(const long long y) {ModInt p(y);x = (x ^ p.x) % mod;return *this;}
    ModInt &operator^=(const int y) {ModInt p(y);x = (x ^ p.x) % mod;return *this;}
    ModInt &operator/=(const ModInt &p) {*this *= p.inv();return *this;}
    ModInt &operator/=(const long long y) {ModInt p(y);*this *= p.inv();return *this;}
    ModInt &operator/=(const int y) {ModInt p(y);*this *= p.inv();return *this;}
    ModInt operator=(const int y) {ModInt p(y);*this = p;return *this;}
    ModInt operator=(const long long y) {ModInt p(y);*this = p;return *this;}
    ModInt operator-() const {return ModInt(-x); }
    ModInt operator++() {x++;if(x>=mod) x-=mod;return *this;}
    ModInt operator--() {x--;if(x<0) x+=mod;return *this;}
    ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
    ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
    ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
    ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
    ModInt operator^(const ModInt &p) const { return ModInt(*this) ^= p; }
    bool operator==(const ModInt &p) const { return x == p.x; }
    bool operator!=(const ModInt &p) const { return x != p.x; }
    ModInt inv() const {int a=x,b=mod,u=1,v=0,t;while(b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);} return ModInt(u);}
    ModInt pow(long long n) const {ModInt ret(1), mul(x);for(;n > 0;mul *= mul,n >>= 1) if(n & 1) ret *= mul;return ret;}
    friend ostream &operator<<(ostream &os, const ModInt &p) {return os << p.x;}
    friend istream &operator>>(istream &is, ModInt &a) {long long t;is >> t;a = ModInt<mod>(t);return (is);}
};
//using modint = ModInt<MOD>;
#line 1 "/home/tfuruta/repos/compro-library/lib/math/NumberTheoreticalTransform.cpp"
/*
 * @title NumberTheoreticalTransform - 数論変換
 * @docs md/math/NumberTheoreticalTransform.md
 */
template<class T> class NumberTheoreticalTransform {
    inline static constexpr int prime1 =1004535809;
    inline static constexpr int prime2 =998244353;
    inline static constexpr int prime3 =985661441;
    inline static constexpr int inv21  =332747959; // ModInt<mod2>(mod1).inv().x;
    inline static constexpr int inv31  =766625513; // ModInt<mod3>(mod1).inv().x;
    inline static constexpr int inv32  =657107549; // ModInt<mod3>(mod2).inv().x;
    inline static constexpr long long prime12=(1002772198720536577LL);
    inline static constexpr int log2n_max = 21;
    static unordered_map<int,array<int,log2n_max>> base_map;
    using Mint  = T;
    using Mint1 = ModInt<prime1>;
    using Mint2 = ModInt<prime2>;
    using Mint3 = ModInt<prime3>;
    inline static Mint garner(const Mint1& b1,const Mint2& b2,const Mint3& b3) {Mint2 t2 = (b2-b1.x)*inv21;Mint3 t3 = ((b3-b1.x)*inv31-t2.x)*inv32;return Mint(Mint(prime12)*t3.x+b1.x+prime1*t2.x);}
    template<int prime> inline static array<ModInt<prime>,log2n_max> get_base(int inv=0) {
        array<ModInt<prime>,log2n_max> base, es, ies;
        ModInt<prime> e = ModInt<prime>(3).pow((prime - 1) >> log2n_max), ie = e.inv();
        for (int i = log2n_max; i >= 2; --i) {
            es[i - 2]  = e, ies[i - 2] = ie;
            e *= e, ie *= ie;
        }
        ModInt<prime> acc = 1;
        if(!inv) for (int i = 0; i < log2n_max - 2; ++i) {
            base[i] = es[i] * acc;
            acc *= ies[i];
        }
        else for (int i = 0; i < log2n_max - 2; ++i) {
            base[i] = ies[i] * acc;
            acc *= es[i];
        }
        return base;
    }
    template<int prime> inline static void butterfly(vector<ModInt<prime>>& a, const array<ModInt<prime>,log2n_max>& base) {
        int h = __builtin_ctz(a.size());
        for (int i = 0; i < h; i++) {
            int w = 1 << i, p = 1 << (h - (i+1));
            ModInt<prime> acc = 1;
            for (int s = 0; s < w; s++) {
                int offset = s << (h - i);
                for (int j = 0; j < p; ++j) {
                    auto l = a[j + offset];
                    auto r = a[j + offset + p] * acc;
                    a[j + offset] = l + r;
                    a[j + offset + p] = l - r;
                }
                acc *= base[__builtin_ctz(~(unsigned int)(s))];
            }
        }
    }
    template<int prime> inline static void ibutterfly(vector<ModInt<prime>>& a, const array<ModInt<prime>,log2n_max>& base) {
        int h = __builtin_ctz(a.size());
        for (int i = h-1; 0 <= i; i--) {
            int w = 1 << i, p = 1 << (h - (i+1));
            ModInt<prime> acc = 1;
            for (int s = 0; s < w; s++) {
                int offset = s << (h - i);
                for (int j = 0; j < p; ++j) {
                    auto l = a[j + offset];
                    auto r = a[j + offset + p];
                    a[j + offset] = l + r;
                    a[j + offset + p] = (l - r) * acc;
                }
                acc *= base[__builtin_ctz(~(unsigned int)(s))];
            }
        }
    }
    template<int prime> inline static vector<ModInt<prime>> convolution_friendrymod(vector<Mint> a,vector<Mint> b){
        int n = a.size(), m = b.size();
        if (!n || !m) return {};
        if (min(n, m) <= 60) {
            if (n < m) swap(n, m),swap(a, b);
            vector<ModInt<prime>> f(n+m-1);
            for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) f[i+j]+=a[i].x*b[j].x;
            return f;
        }

        int N,M=n+m-1; for(N=1;N<M;N*=2);
        ModInt<prime> inverse(N); inverse = inverse.inv();
        vector<ModInt<prime>> g(N,0),h(N,0);
        for(int i=0;i<a.size();++i) g[i]=a[i].x;
        for(int i=0;i<b.size();++i) h[i]=b[i].x;

        static array<ModInt<prime>,log2n_max> base;
        if(!base.front().x) base = get_base<prime>();
        static array<ModInt<prime>,log2n_max> ibase;
        if(!ibase.front().x) ibase = get_base<prime>(1);

        butterfly<prime>(g,base); 
        butterfly<prime>(h,base);
        for(int i = 0; i < N; ++i) g[i] *= h[i];
        ibutterfly<prime>(g,ibase);
        for (int i = 0; i < n + m - 1; i++) g[i] *= inverse;
        return g;
    }
    inline static vector<Mint> convolution_arbitrarymod(const vector<Mint>& g,const vector<Mint>& h){
        auto f1 = convolution_friendrymod<prime1>(g, h);
        auto f2 = convolution_friendrymod<prime2>(g, h);
        auto f3 = convolution_friendrymod<prime3>(g, h);

        vector<Mint> f(f1.size());
        for(int i=0; i<f1.size(); ++i) f[i] = garner(f1[i],f2[i],f3[i]);
        return f;
    }
public:
    inline static vector<long long> convolution(const vector<long long>& g,const vector<long long>& h) {
        vector<T> a(g.size()), b(h.size());
        transform(g.begin(),g.end(),a.begin(),[&](long long x){return T(x);});
        transform(h.begin(),h.end(),b.begin(),[&](long long x){return T(x);});
        auto c = convolution_arbitrarymod(a,b);
        vector<long long> f(g.size()+h.size()-1);
        transform(c.begin(),c.end(),f.begin(),[&](T x){return x.x;});
        return f;
    }
    inline static vector<ModInt<998244353>> convolution(const vector<ModInt<998244353>>& g,const vector<ModInt<998244353>>& h){return convolution_friendrymod<998244353>(g,h);}
    inline static vector<ModInt<1000000007>> convolution(const vector<ModInt<1000000007>>& g,const vector<ModInt<1000000007>>& h){return convolution_arbitrarymod(g,h);}
    // inline vector<RuntimeModInt<runtime_mod>> convolution(const vector<RuntimeModInt<runtime_mod>>& g,const vector<RuntimeModInt<runtime_mod>>& h){return convolution_arbitrarymod(g,h);}
};
#line 10 "NumberTheoreticalTransform.test.cpp"

constexpr long long mod = 998244353;

int main() {
    cin.tie(0);ios::sync_with_stdio(false);
    int N,Q; cin >> N >> Q;
    vector<ModInt<mod>> A(N),B(N,0),D(N,0);
    for(int i=0;i<N;++i) cin >> A[i];
    while(Q--){
        int r; cin >> r; B[N-1-r]+=1;
    }
    auto C = NumberTheoreticalTransform<ModInt<mod>>::convolution(A,B);
    for(int i=0;i<2*N-1;++i) {
        D[(i+1)%N]+=C[i];
    }
    for(int i=0;i<N;++i) cout << D[i] << " \n"[i==N-1];
    return 0;
}
0