結果

問題 No.1477 Lamps on Graph
ユーザー torisasami4
提出日時 2021-04-16 20:41:06
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 261 ms / 2,000 ms
コード長 5,530 bytes
コンパイル時間 2,055 ms
コンパイル使用メモリ 185,340 KB
実行使用メモリ 45,804 KB
最終ジャッジ日時 2024-07-02 23:10:46
合計ジャッジ時間 8,517 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 38
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb(x) push_back(x)
#define mp(a, b) make_pair(a, b)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define lscan(x) scanf("%I64d", &x)
#define lprint(x) printf("%I64d", x)
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define rep2(i, n) for (ll i = n - 1; i >= 0; i--)
#define REP(i, l, r) for (ll i = l; i < (r); i++)
template <class T>
using rque = priority_queue<T, vector<T>, greater<T>>;
const ll mod = 998244353;
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmax(T &a, const T &b) {
if (b > a) {
a = b;
return 1;
}
return 0;
}
ll gcd(ll a, ll b)
{
ll c = a % b;
while (c != 0)
{
a = b;
b = c;
c = a % b;
}
return b;
}
long long extGCD(long long a, long long b, long long &x, long long &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
long long d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
struct UnionFind
{
vector<ll> data;
UnionFind(int sz)
{
data.assign(sz, -1);
}
bool unite(int x, int y)
{
x = find(x), y = find(y);
if (x == y)
return (false);
if (data[x] > data[y])
swap(x, y);
data[x] += data[y];
data[y] = x;
return (true);
}
int find(int k)
{
if (data[k] < 0)
return (k);
return (data[k] = find(data[k]));
}
ll size(int k)
{
return (-data[find(k)]);
}
};
ll M = 1000000007;
vector<ll> fac(2000011, 0); //n!(mod M)
vector<ll> ifac(2000011); //k!^{M-2} (mod M)
ll mpow(ll x, ll n)
{
ll ans = 1;
while (n != 0)
{
if (n & 1)
ans = ans * x % M;
x = x * x % M;
n = n >> 1;
}
return ans;
}
ll mpow2(ll x, ll n, ll mod)
{
ll ans = 1;
while (n != 0)
{
if (n & 1)
ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
return ans;
}
void setcomb()
{
fac[0] = 1;
ifac[0] = 1;
for (ll i = 0; i < 2000010; i++)
{
fac[i + 1] = fac[i] * (i + 1) % M; // n!(mod M)
}
ifac[2000010] = mpow(fac[2000010], M - 2);
for (ll i = 2000010; i > 0; i--)
{
ifac[i - 1] = ifac[i] * i % M;
}
}
ll comb(ll a, ll b)
{
if(fac[0] == 0)
setcomb();
if (a == 0 && b == 0)
return 1;
if (a < b || a < 0)
return 0;
ll tmp = ifac[a - b] * ifac[b] % M;
return tmp * fac[a] % M;
}
ll perm(ll a, ll b)
{
if (a == 0 && b == 0)
return 1;
if (a < b || a < 0)
return 0;
return fac[a] * ifac[a - b] % M;
}
long long modinv(long long a)
{
long long b = M, u = 1, v = 0;
while (b)
{
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= M;
if (u < 0)
u += M;
return u;
}
ll modinv2(ll a, ll mod)
{
ll b = mod, u = 1, v = 0;
while (b)
{
ll t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= mod;
if (u < 0)
u += mod;
return u;
}
template <int mod>
struct ModInt
{
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p)
{
if ((x += p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p)
{
if ((x += mod - p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p)
{
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p)
{
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const
{
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0)
{
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const
{
ModInt ret(1), mul(x);
while (n > 0)
{
if (n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p)
{
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a)
{
int64_t t;
is >> t;
a = ModInt<mod>(t);
return (is);
}
static int get_mod() { return mod; }
};
using mint = ModInt<mod>;
typedef vector<vector<mint>> Matrix;
Matrix mul(Matrix a, Matrix b)
{
assert(a[0].size() == b.size());
int i, j, k;
int n = a.size(), m = b[0].size(), l = a[0].size();
Matrix c(n, vector<mint>(m));
for (i = 0; i < n; i++)
for (k = 0; k < l; k++)
for (j = 0; j < m; j++)
c[i][j] += a[i][k] * b[k][j];
return c;
}
Matrix mat_pow(Matrix x, ll n)
{
ll k = x.size();
Matrix ans(k, vector<mint>(k, 0));
for (int i = 0; i < k; i++)
ans[i][i] = 1;
while (n != 0)
{
if (n & 1)
ans = mul(ans, x);
x = mul(x, x);
n = n >> 1;
}
return ans;
}
int main(){
ll n, m;
cin >> n >> m;
ll a[n];
rep(i, n) cin >> a[i];
vector<ll> li[n];
ll u, v;
rep(i, m) cin >> u >> v, li[--u].pb(--v), li[v].pb(u);
ll k;
cin >> k;
ll b, c[n] = {};
rep(i, k) cin >> b, c[--b]++;
vector<pair<ll, ll>> vec;
rep(i, n) vec.pb(mp(a[i], i));
sort(all(vec));
vector<ll> ans;
rep(i,n){
ll now = vec[i].second;
if (c[now]){
ans.pb(now + 1);
for(auto &e: li[now]){
if(a[now] < a[e])
c[e] ^= 1;
}
}
}
cout << ans.size() << endl;
for(auto &e: ans)
cout << e << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0