結果
| 問題 | 
                            No.1856 Mex Sum 2
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2021-04-17 17:41:17 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 1,462 ms / 3,000 ms | 
| コード長 | 1,801 bytes | 
| コンパイル時間 | 217 ms | 
| コンパイル使用メモリ | 82,572 KB | 
| 実行使用メモリ | 77,680 KB | 
| 最終ジャッジ日時 | 2024-07-04 04:43:12 | 
| 合計ジャッジ時間 | 42,897 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge4 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 64 | 
ソースコード
mod = 998244353
def fft_inplace(a, w):
    n = len(a)
    m = n
    t = 1
    while m >= 2:
        mh = m >> 1
        for i in range(0, n, m):
            for s in range(mh):
                j, k = i+s, i+mh+s
                a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k])*w[s*t] % mod
        m = mh
        t *= 2
def ifft_inplace(a, w):
    n = len(a)
    m = 2
    t = -(n >> 1)
    while m <= n:
        mh = m >> 1
        for i in range(0, n, m):
            for s in range(mh):
                j, k = i+s, i+mh+s
                a[k] *= w[s*t]
                a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k]) % mod
        m <<= 1
        t //= 2
    n_inv = pow(n, mod-2, mod)
    for i in range(n):
        a[i] = a[i] * n_inv % mod
n, m = map(int, input().split())
fixed_n = 1 << ((n+1)*2).bit_length()
w_root = pow(3, (mod-1)//fixed_n, mod)
w = [1] * fixed_n
for i in range(1, fixed_n):
    w[i] = w[i-1] * w_root % mod
frac = [1] * (n + 1)
for i in range(1, n+1):
    frac[i] = frac[i-1] * i % mod
frac_inv = [0] * (n+1)
frac_inv[n] = pow(frac[n], mod-2, mod)
for i in range(1, n+1)[::-1]:
    frac_inv[i-1] = frac_inv[i] * i % mod
dp1 = [0] * fixed_n
dp1[0] = 1
t = [0] * fixed_n
for i in range(n+1):
    t[i] = (pow(2, i, mod)-1) * pow(pow(2, i, mod) * frac[i], mod-2, mod) % mod
fft_inplace(t, w)
ans_sub = [0] * (n+1)
for k in range(min(n, m+1)):
    fft_inplace(dp1, w)
    for i, j in enumerate(t):
        dp1[i] = dp1[i] * j % mod
    ifft_inplace(dp1, w)
    pow_tmp = 1
    for i in range(k+1, n+1)[::-1]:
        ans_sub[i] += dp1[i] * pow_tmp % mod
        pow_tmp = pow_tmp * (m - k) % mod
    for i in range(n+1, fixed_n):
        dp1[i] = 0
ans = sum(ans_sub[i] % mod * frac_inv[n-i] for i in range(n+1)) % mod
ans = ans * pow(2, n, mod) * frac[n] % mod
print(ans)