結果

問題 No.665 Bernoulli Bernoulli
ユーザー hitonanode
提出日時 2021-05-03 18:21:21
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 52 ms / 2,000 ms
コード長 11,276 bytes
コンパイル時間 2,354 ms
コンパイル使用メモリ 207,032 KB
最終ジャッジ日時 2025-01-21 06:20:34
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 15
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
template <int mod> struct ModInt {
#if __cplusplus >= 201402L
#define MDCONST constexpr
#else
#define MDCONST
#endif
using lint = long long;
MDCONST static int get_mod() { return mod; }
static int get_primitive_root() {
static int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&]() {
std::set<int> fac;
int v = mod - 1;
for (lint i = 2; i * i <= v; i++)
while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < mod; g++) {
bool ok = true;
for (auto i : fac)
if (ModInt(g).pow((mod - 1) / i) == 1) {
ok = false;
break;
}
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
int val;
MDCONST ModInt() : val(0) {}
MDCONST ModInt &_setval(lint v) { return val = (v >= mod ? v - mod : v), *this; }
MDCONST ModInt(lint v) { _setval(v % mod + mod); }
MDCONST explicit operator bool() const { return val != 0; }
MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }
MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); }
MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); }
MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); }
MDCONST ModInt operator-() const { return ModInt()._setval(mod - val); }
MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); }
friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); }
friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); }
friend MDCONST ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); }
MDCONST bool operator==(const ModInt &x) const { return val == x.val; }
MDCONST bool operator!=(const ModInt &x) const { return val != x.val; }
MDCONST bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T>
friend std::istream &operator>>(std::istream &is, ModInt &x) {
lint t;
return is >> t, x = ModInt(t), is;
}
MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val; }
MDCONST ModInt pow(lint n) const {
lint ans = 1, tmp = this->val;
while (n) {
if (n & 1) ans = ans * tmp % mod;
tmp = tmp * tmp % mod, n /= 2;
}
return ans;
}
static std::vector<long long> facs, invs;
MDCONST static void _precalculation(int N) {
int l0 = facs.size();
if (N <= l0) return;
facs.resize(N), invs.resize(N);
for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i % mod;
long long facinv = ModInt(facs.back()).pow(mod - 2).val;
for (int i = N - 1; i >= l0; i--) {
invs[i] = facinv * facs[i - 1] % mod;
facinv = facinv * i % mod;
}
}
MDCONST lint inv() const {
if (this->val < std::min(mod >> 1, 1 << 21)) {
while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);
return invs[this->val];
} else {
return this->pow(mod - 2).val;
}
}
MDCONST ModInt fac() const {
while (this->val >= int(facs.size())) _precalculation(facs.size() * 2);
return facs[this->val];
}
MDCONST ModInt doublefac() const {
lint k = (this->val + 1) / 2;
return (this->val & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k);
}
MDCONST ModInt nCr(const ModInt &r) const { return (this->val < r.val) ? 0 : this->fac() / ((*this - r).fac() * r.fac()); }
ModInt sqrt() const {
if (val == 0) return 0;
if (mod == 2) return val;
if (pow((mod - 1) / 2) != 1) return 0;
ModInt b = 1;
while (b.pow((mod - 1) / 2) == 1) b += 1;
int e = 0, m = mod - 1;
while (m % 2 == 0) m >>= 1, e++;
ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
x *= (*this);
ModInt z = b.pow(m);
while (y != 1) {
int j = 0;
ModInt t = y;
while (t != 1) j++, t *= t;
z = z.pow(1LL << (e - j - 1));
x *= z, z *= z, y *= z;
e = j;
}
return ModInt(std::min(x.val, mod - x.val));
}
};
template <int mod> std::vector<long long> ModInt<mod>::facs = {1};
template <int mod> std::vector<long long> ModInt<mod>::invs = {0};
template <typename MODINT> MODINT interpolate_iota(const std::vector<MODINT> ys, MODINT x_eval) {
const int N = ys.size();
if (x_eval.val < N) return ys[x_eval.val];
std::vector<MODINT> facinv(N);
facinv[N - 1] = MODINT(N - 1).fac().inv();
for (int i = N - 1; i > 0; i--) facinv[i - 1] = facinv[i] * i;
std::vector<MODINT> numleft(N);
MODINT numtmp = 1;
for (int i = 0; i < N; i++) {
numleft[i] = numtmp;
numtmp *= x_eval - i;
}
numtmp = 1;
MODINT ret = 0;
for (int i = N - 1; i >= 0; i--) {
MODINT tmp = ys[i] * numleft[i] * numtmp * facinv[i] * facinv[N - 1 - i];
ret += ((N - 1 - i) & 1) ? (-tmp) : tmp;
numtmp *= x_eval - i;
}
return ret;
}
template <typename MODINT> MODINT sum_of_exponential_times_polynomial_limit(MODINT r, std::vector<MODINT> init) {
assert(r != 1);
if (init.empty()) return 0;
if (init.size() == 1) return init[0] / (1 - r);
auto &bs = init;
const int d = int(bs.size()) - 1;
MODINT rp = 1;
for (int i = 1; i <= d; i++) rp *= r, bs[i] = bs[i] * rp + bs[i - 1];
MODINT ret = 0;
rp = 1;
for (int i = 0; i <= d; i++) {
ret += bs[d - i] * MODINT(d + 1).nCr(i) * rp;
rp *= -r;
}
return ret / MODINT(1 - r).pow(d + 1);
};
template <typename MODINT> MODINT sum_of_exponential_times_polynomial(MODINT r, const std::vector<MODINT> &init, long long N) {
if (N <= 0) return 0;
if (init.size() == 1) return init[0] * (r == 1 ? MODINT(N) : (1 - r.pow(N)) / (1 - r));
std::vector<MODINT> S(init.size() + 1);
MODINT rp = 1;
for (int i = 0; i < int(init.size()); i++) {
S[i + 1] = S[i] + init[i] * rp;
rp *= r;
}
if (N < (long long)S.size()) return S[N];
if (r == 1) return interpolate_iota<MODINT>(S, N);
const MODINT Sinf = sum_of_exponential_times_polynomial_limit<MODINT>(r, init);
MODINT rinv = r.inv(), rinvp = 1;
for (int i = 0; i < int(S.size()); i++) {
S[i] = (S[i] - Sinf) * rinvp;
rinvp *= rinv;
}
return interpolate_iota<MODINT>(S, N) * r.pow(N) + Sinf;
};
// Linear sieve algorithm for fast prime factorization
// Complexity: O(N) time, O(N) space:
// - MAXN = 10^7: ~44 MB, 80~100 ms (Codeforces / AtCoder GCC, C++17)
// - MAXN = 10^8: ~435 MB, 810~980 ms (Codeforces / AtCoder GCC, C++17)
// Reference:
// [1] D. Gries, J. Misra, "A Linear Sieve Algorithm for Finding Prime Numbers,"
// Communications of the ACM, 21(12), 999-1003, 1978.
// - https://cp-algorithms.com/algebra/prime-sieve-linear.html
// - https://37zigen.com/linear-sieve/
struct Sieve {
std::vector<int> min_factor;
std::vector<int> primes;
Sieve(int MAXN) : min_factor(MAXN + 1) {
for (int d = 2; d <= MAXN; d++) {
if (!min_factor[d]) {
min_factor[d] = d;
primes.emplace_back(d);
}
for (const auto &p : primes) {
if (p > min_factor[d] or d * p > MAXN) break;
min_factor[d * p] = p;
}
}
}
// Prime factorization for 1 <= x <= MAXN^2
// Complexity: O(log x) (x <= MAXN)
// O(MAXN / log MAXN) (MAXN < x <= MAXN^2)
template <typename T> std::map<T, int> factorize(T x) {
std::map<T, int> ret;
assert(x > 0 and x <= ((long long)min_factor.size() - 1) * ((long long)min_factor.size() - 1));
for (const auto &p : primes) {
if (x < T(min_factor.size())) break;
while (!(x % p)) x /= p, ret[p]++;
}
if (x >= T(min_factor.size())) ret[x]++, x = 1;
while (x > 1) ret[min_factor[x]]++, x /= min_factor[x];
return ret;
}
// Enumerate divisors of 1 <= x <= MAXN^2
// Be careful of highly composite numbers https://oeis.org/A002182/list https://gist.github.com/dario2994/fb4713f252ca86c1254d#file-list-txt
// (n, (# of div. of n)): 45360->100, 735134400(<1e9)->1344, 963761198400(<1e12)->6720
template <typename T> std::vector<T> divisors(T x) {
std::vector<T> ret{1};
for (const auto p : factorize(x)) {
int n = ret.size();
for (int i = 0; i < n; i++) {
for (T a = 1, d = 1; d <= p.second; d++) {
a *= p.first;
ret.push_back(ret[i] * a);
}
}
}
return ret; // NOT sorted
}
// Moebius function Table, (-1)^{# of different prime factors} for square-free x
// return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...] https://oeis.org/A008683
std::vector<int> GenerateMoebiusFunctionTable() {
std::vector<int> ret(min_factor.size());
for (unsigned i = 1; i < min_factor.size(); i++) {
if (i == 1)
ret[i] = 1;
else if ((i / min_factor[i]) % min_factor[i] == 0)
ret[i] = 0;
else
ret[i] = -ret[i / min_factor[i]];
}
return ret;
}
// Calculate [0^K, 1^K, ..., nmax^K] in O(nmax)
// Note: **0^0 == 1**
template <typename MODINT> std::vector<MODINT> enumerate_kth_pows(long long K, int nmax) {
assert(nmax < int(min_factor.size()));
assert(K >= 0);
if (K == 0) return std::vector<MODINT>(nmax + 1, 1);
std::vector<MODINT> ret(nmax + 1);
ret[0] = 0, ret[1] = 1;
for (int n = 2; n <= nmax; n++) {
if (min_factor[n] == n) {
ret[n] = MODINT(n).pow(K);
} else {
ret[n] = ret[n / min_factor[n]] * ret[min_factor[n]];
}
}
return ret;
}
};
// Sieve sieve(1 << 15); // (can factorize n <= 10^9)
using mint = ModInt<1000000007>;
int main() {
long long N;
int K;
cin >> N >> K;
cout << sum_of_exponential_times_polynomial<mint>(1, Sieve(K).enumerate_kth_pows<mint>(K, K), N + 1) << '\n';
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0